Technology-enhanced learning influence on chemical literacy: A systematic review
Main Article Content
Abstract
Chemical literacy is essential to address socio-scientific issues arising today. Technology plays a key role in increasing students’ chemical literacy. Understanding how technology improves chemical literacy can help teachers choose appropriate learning tools and strategies. A systematic review with PRISMA guidelines was conducted to map the technology widely used in current chemistry learning and know-how technology influences the development of chemical literacy based on the PISA framework. A total of 15 articles were identified as meeting the review criteria. The results show that based on the literature review, E-modules are the most commonly used technology to improve chemical literacy. Technologies such as augmented reality, Canva, e-modules, mobile apps, and websites are important for the ability to “explain phenomena scientifically”. Adobe Flash Interactive Media and Virtual Laboratories are particularly effective for “constructing and evaluating designs for scientific investigation and critical interpretation of scientific data and evidence.” Finally, search engine technology has a significant impact on the ability to “research, evaluate, and use scientific information for decision-making and action”.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
References
Abdinejad, M.; Talaie, B.; Qorbani, H. S.; Dalili, S. Percepciones de los estudiantes utilizando tecnologías de realidad aumentada y visualización 3D en la educación química. J. Sci. Educ. Technol. 2021, 30 (1), 87–96. https://doi.org/10.1007/s10956-020-09880-2
Ali, S. B.; Abdul Talib, C.; Jamal, A. M. Digital technology approach in chemistry education: A systematic literature review. J. Nat. Sci. Integr. 2023, 6 (1), 1. https://doi.org/10.24014/jnsi.v6i1.21777
Almazaydeh, L.; Younes, I.; Elleithy, K. An interactive and self-instructional virtual chemistry laboratory. Int. J. Emerg. Technol. Learn. 2016, 11 (7), 70–73. https://doi.org/10.3991/ijet.v11i07.5853
Bellou, I.; Papaschritos, N. M.; Mikropoulos, T. A. Digital learning technologies in chemistry education: A review. In Digital Technologies: Sustainable Innovations for Improving Teaching and Learning, 2018, 57–80. Springer. https://doi.org/10.1007/978-3-319-73417-0_4
Bortnik, B.; Stozhko, N.; Pervukhina, I.; Tchernysheva, A.; Belysheva, G. Effect of virtual analytical chemistry laboratory on enhancing student research skills and practices. Res. Learn. Technol. 2017, 25, 1063519, 1–20. https://doi.org/10.25304/rlt.v25.1968
Cahyana, U.; Supatmi, S.; Erdawati, E.; Rahmawati, Y. The influence of web-based learning and learning independence toward student's scientific literacy in chemistry course. Int. J. Instr. 2019, 12 (4), 655–668. https://doi.org/10.29333/iji.2019.12442a
Cavagnetto, A. R. Argument to foster scientific literacy: A review of argument interventions in k-12 science contexts. Rev. Educ. Res. 2010, 80 (3), 336–371. https://doi.org/10.3102/0034654310376953
Chamimmah, N.; Indriani, L.; Mariono, M. A. The influence of web-based learning on students ' self-regulated learning in high school chemistry learning. Int. J. Educ. Res. Rev. 2023, 8 (2), 257–267. https://doi.org/10.24331/ijere.1249689
Cole, R. S.; Todd, J. B. Effects of web-based multimedia homework with immediate rich feedback on student learning. J. Chem. Educ. Res. 2003, 80 (11), 1338–1343. https://doi.org/10.1021/ed080p1338
Duval, E.; Sharples, M.; Sutherland, R. Technology enhanced learning: Research themes. In Springer Nature, 2017, pp. 180. https://doi.org/10.1007/978-3-319-02600-8_4
Ekins, S.; Clark, A. M.; Williams, A. J. Incorporating green chemistry concepts into mobile chemistry applications and their potential uses. ACS Sustainable Chem. Eng. 2013, 1 (1), 8–13. https://doi.org/10.1021/sc3000509
Ewais, A.; Hodrob, R.; Maree, M.; Jaradat, S. Mobile learning application for helping pupils in learning chemistry. Int. J. Interact. Mobile Technol. 2021, 15 (1), 105–118. https://doi.org/10.3991/ijim.v15i01.11897
Fatihah, W.; Ruhiat, Y. Pengembangan konten pembelajaran berbasis canva pada pokok bahasan asam-basa. J. Inov. Educ. Quim. 2023, 17 (1), 57-61. https://doi.org/10.15294/jipk.v17i1.36674
Fombona-Pascual, A.; Fombona, J.; Vicente, R. Augmented reality, a review of a way to represent and manipulate 3d chemical structures. J. Chem. Inf. Model. 2022, 62 (8), 1863–1872. https://doi.org/10.1021/acs.jcim.1c01255
Frailich, M.; Kesner, M.; Hofstein, A. The influence of web-based chemistry learning on students' perceptions, attitudes, and achievements. Int. J. Phytoremediation 2007, 25 (2), 179–197. https://doi.org/10.1080/02635140701250659
Gawalt, E. S.; Adams, B. A Chemical information literacy program for first-year students. J. Chem. Educ. 2011, 88 (4), 402–407. https://doi.org/10.1021/ed100625n
Habig, S. Who can benefit from augmented reality in chemistry? Sex differences in solving stereochemistry problems using augmented reality. Br. J. Educ. Technol. 2020, 51 (3), 629–644. https://doi.org/10.1111/bjet.12891
Harefa, N.; Silalahi, N. F. D. Improvement of student's learning outcomes and motivation with chemical practicum e-module. J. Pendidikan Kimia 2020, 12 (1), 10–19. https://doi.org/10.24114/jpkim.v12i1.17708
Heliawati, L.; Lidiawati, L.; Adriansyah, P. N. A.; Herlina, E. Ethnochemistry-Based adobe flash learning media using indigenous knowledge to improve students' scientific literacy. J. Pendidikan IPA Indonesia 2022, 11 (2), 271–281. https://doi.org/10.15294/jpii.v11i2.34859
Holbrook, J.; Rannikmae, M. The nature of science education for enhancing scientific literacy. Int. J. Sci. Educ. 2007, 29 (11), 1347–1362. https://doi.org/10.1080/09500690601007549
Kartimi, K.; Yunita, Y.; Addiin, I.; Shidiq, A. S. A bibliometric analysis on chemistry virtual laboratory. Educ. Quím. 2022, 33 (2), 194–208. https://doi.org/10.22201/fq.18708404e.2022.2.80579
Khairi, M. A.; Ikhsan, J. Development of guided inquiry-based electronic modules and its effects on students' chemical literacy. JKPK (J. Kim. Dan Pend. Kim.) 2022, 7 (2), 181. https://doi.org/10.20961/jkpk.v7i2.62319
Khery, Y.; Nufida, B. A.; Suryati, S. The influence of mobile-NOS model on students understanding on Nature of Science (NOS) and scientific literacy. J. Phys.: Conf. Ser. 2020, 1521 (4), 042091. https://doi.org/10.1088/1742-6596/1521/4/042091
Kim, H.; Chacko, P.; Zhao, J.; Montclare, J. K. Using touch-screen technology, apps, and blogs to engage and sustain high school students' interest in chemistry topics. J. Chem. Educ. 2014, 91 (11), 1818–1822. https://doi.org/10.1021/ed500234z
Kirkwood, A.; Price, L. Technology-enhanced learning and teaching in higher education: what is "enhanced" and how do we know? A critical literature review. Learn. Media Technol. 2014, 39 (1), 6–36. https://doi.org/10.1080/17439884.2013.770404
Kohen, Z.; Herscovitz, O.; Dori, Y. J. How to promote chemical literacy? On-line question posing and communicating with scientists. Chem. Educ. Res. Pract. 2020, 21 (1), 250–266. https://doi.org/10.1039/C9RP00134D
Laugksch, R. C. Scientific Literacy: A conceptual overview. In Scientific Literacy: An International Symposium; John Wiley & Sons: 2000; pp. 71–94.
Logan, R. M.; Johnson, C. E.; Worsham, J. W. Development of an e-learning module to facilitate student learning and outcomes. Teach. Learn. Nurs. 2021, 16 (2), 139–142. https://doi.org/10.1016/j.teln.2020.10.007
Martínez-Jiménez, P.; Pontes-Pedrajas, A.; Polo, J.; Climent-Bellido, M. S. Learning in chemistry with virtual laboratories. J. Chem. Educ. 2003, 80 (3), 346–352. https://doi.org/10.1021/ed080p346
Memon, M. Q.; Lu, Y.; Memon, A. R.; Memon, A.; Munshi, P.; Shah, S. F. A. Does the impact of technology sustain students' satisfaction, academic and functional performance: An analysis via interactive and self-regulated learning? Sustainability 2022, 14 (12), 1–19. https://doi.org/10.3390/su14127226
Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D. G.; Antes, G.; Atkins, D.; Barbour, V.; Barrowman, N.; Berlin, J. A.; Clark, J.; Clarke, M.; Cook, D.; D'Amico, R.; Deeks, J. J.; Devereaux, P. J.; Dickersin, K.; Egger, M.; Ernst, E.; Gøtzsche, P. C.; Grimshaw, J.; Guyatt, G.; Higgins, J.; Ioannidis, J. P. A.; Kleijnen, J.; Lang, T.; Liberati, A.; Magrini, N.; McNamee, D.; Moja, L.; Moher, D.; Mulrow, C.; Napoli, M.; Oxman, A.; Ba' Pham; Rennie, D.; Sampson, M.; Schulz, K. F.; Shekelle, P. G.; Tetzlaff, J.; Tovey, D.; Tugwell, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6 (7), e1000097. https://doi.org/10.1371/journal.pmed.1000097
Mozeika, D.; Bilbokaite, R. Teaching and learning method for enhancing 15-16 years old students' knowledge as one of scientific literacy aspect in chemistry: Results based on research and approbation. Int. J. Educ. Res. 2011, 2010 (1), 1–16.
Murov, S. Exploring chemistry resources on the internet. J. Chem. Educ. 2001, 78 (10), 1429–1432. https://doi.org/10.1021/ed078p1429
Nainggolan, B.; Juniar, A.; Silaban, R. Development of project-based interactive e-modules in accordance with the IQF integrated curriculum concept in learning organic chemical reactions to improve student chemistry learning outcomes. J. Pendidikan Kimia 2023, 15 (3), 281–291. https://doi.org/10.24114/jpkim.v15i3.47366
Novitasari, R.; Waluyo, J.; Nuriman, N. Chemistry e-module based on socio scientific issues (SSI) for reaction rate material to increase senior high school students' chemical literacy. Eduvest - J. Univ. Stud. 2022, 2 (9), 1811–1816. https://doi.org/10.59188/eduvest.v2i9.588
Organização para Cooperação e Desenvolvimento Econômico (OECD). PISA 2025 Science Framework. OECD; 2023, 1–93.
Primadianningsih, C.; Sumarni, W.; Sudarmin, S. Systematic literature review: Analysis of ethno-STEM and student's chemistry literacy profile in 21st century. J. Penelitian Pendidikan IPA 2023, 9 (2), 650–659. https://doi.org/10.29303/jppipa.v9i2.2559
Pulungan, E. N.; Simamora, K. F. Influence of canva media based on guided inquiry model on students' critical thinking ability and chemical literacy. J. Inovasi Pembelajaran Kimia 2024, 6 (1), 100–1010. https://doi.org/10.24114/jipk.v6i1.57379
Queiruga-Dios, M. Á.; López-Iñesta, E.; Diez-Ojeda, M.; Sáiz-Manzanares, M. C.; Dorrío, J. B. V. Citizen science for scientific literacy and the attainment of sustainable development goals in formal education. Sustainability 2020, 12 (10), 4283. https://doi.org/10.3390/su12104283
Rahayu, S. Promoting the 21st century scientific literacy skills through innovative chemistry instruction. AIP Conf. Proc. 2017, 1911 (1), 020025. https://doi.org/10.1063/1.5016018
Reiss, M. J.; Millar, R.; Osborne, J. Beyond 2000: Science/biology education for the future. J. Biol. Educ. 1999, 33 (2), 68–70. https://doi.org/10.1080/00219266.1999.9655644
Roberts, D. A. Scientific Literacy/Science Literacy. In S. K. Abell & N. G. Lederman (Eds.), Handbook of Research on Science Education. 2007, 25, 729–781.
Roth, W.-M.; Barton, A. C. Rethinking scientific literacy. Routledge, 2004. https://doi.org/10.4324/9780203463918
Sadykov, T. M.; Ctrnactova, H.; Kokibasova, G. T. Students' opinions toward interactive apps used for teaching chemistry. Bull. Karaganda Univ. Chem. Ser. 2021, 103 (3), 103–114. https://doi.org/10.31489/2021CH3/103-114
Schultz, M.; Lim, K. F.; Goh, Y. K.; Callahan, D. L. OK google: what's the answer? characteristics of students who searched the internet during an online chemistry examination. Assess. Eval. Higher Educ. 2022, 47 (8), 1458–1474. https://doi.org/10.1080/02602938.2022.2048356
Seery, M. K.; McDonnell, C. The application of technology to enhance chemistry education. Chem. Educ. Res. Pract. 2013, 14 (3), 227–228. https://doi.org/10.1039/c3rp90006a
Shwartz, Y.; Ben-Zv, R.; Hofstein, A. The importance of involving high-school chemistry teachers in the process of defining the operational meaning of 'chemical literacy.' Int. J. Sci. Educ. 2005, 27 (3), 323–344. https://doi.org/10.1080/0950069042000266191
Shwartz, Y.; Ben-Zvi, R.; Hofstein, A. Chemical literacy: What does this mean to scientists and school teachers? J. Chem. Educ. 2006, 83 (10), 1557–1561. https://doi.org/10.1021/ed083p1557
Shwartz, Y.; Ben-Zvi, R.; Hofstein, A. The use of scientific literacy taxonomy for assessing the development of chemical literacy among high-school students. Chem. Educ. Res. Pract. 2006, 7 (4), 203–225. https://doi.org/10.1039/B6RP90011A
Stašević, F.; Miletić, N.; Nikolić, J. Đ.; Gutman, I. Do Serbian high school students possess knowledge of basic chemical facts related to real life as a prerequisite for chemical literacy? J. Serb. Chem. Soc. 2023, 88 (3), 343–354. https://doi.org/10.2298/JSC211126083S
Subarkah, C. Z.; Gunawan, A.; Irwansyah, F. S.; Ruswandi, U. The development of chemical-literacy-oriented electronic module on battery topic. Proc. 1st Bandung Engl. Lang. Teach. Int. Conf. (BELTIC) 2020, 2018, 105, 504–509. https://doi.org/10.5220/0008221505040509
Suliono, S.; Enawaty, E.; Astuti, I. Development of acid-base multimedia (ABM) in chemistry learning to empower students' scientific literacy. J. Pen. Pendidik. IPA 2023, 9 (11), 10395–10402. https://doi.org/10.29303/jppipa.v9i11.4445
Sulistina, O.; Hasanah, S. M. Improving chemical literacy skills: integrated socio-scientific issues content in augmented reality mobile. Int. J. Interact. Mob. Technol. (IJIM) 2024, 18 (5), 135–147. https://doi.org/10.3991/ijim.v18i05.47923
Sutiani, A.; Pasaribu, C. J. T. Fostering scientific literacy through integrated STEM teaching materials on basic laws of chemistry. JTK (Jurnal Tadris Kimiya) 2023, 8 (1), 95–103. https://doi.org/10.15575/jtk.v8i1.25833
Tawafak, R. M.; Romli, A. B. T.; Arshah, R. bin A.; Almaroof, R. A. S. Assessing the impact of technology learning and assessment method on academic performance: Review paper. Eur. J. Math. Sci. Tech. Educ. 2018, 14 (6), 2241–2254. https://doi.org/10.29333/ejmste/87117
Techakosit, S.; Wannapiroon, P. Connectivism learning environment in augmented reality science laboratory to enhance scientific literacy. Procedia - Soc. Behav. Sci. 2015, 174 (2), 2108–2115. https://doi.org/10.1016/j.sbspro.2015.02.009
Vargas, I. M.; Cabrera, C. I. G.; Cortez, C. A. A.; Apaza, I. M. A.; Reátegui, M. D. The Canva platform and meaningful learning in regular basic education. Int. J. Health Sci. 2022, 6, 643–658. https://doi.org/10.53730/ijhs.v6ns7.11213
Wiyarsi, A.; Prodjosantoso, A. K.; Nugraheni, A. R. E. Promoting students' scientific habits of mind and chemical literacy using the context of socio-scientific issues on the inquiry learning. Front. Educ. 2021, 6, 1–12. https://doi.org/10.3389/feduc.2021.660495
Wu, S. H.; Lai, C. L.; Hwang, G. J.; Tsai, C. C. Research trends in technology-enhanced chemistry learning: a review of comparative research from 2010 to 2019. J. Sci. Educ. Technol. 2021, 30 (4), 496–510. https://doi.org/10.1007/s10956-020-09894-w
Yacoubian, H. A. Scientific literacy for democratic decision-making. Int. J. Sci. Educ. 2018, 40 (3), 308–327. https://doi.org/10.1080/09500693.2017.1420266
Yore, L. D.; Pimm, D.; Tuan, H. L. The literacy component of mathematical and scientific literacy. Int. J. Sci. Math. Educ. 2007, 5 (4), 559–589. https://doi.org/10.1007/s10763-007-9089-4
Yuendita, D.; Dina, D. Development of chemical literacy book on local wisdom of madura culture based on augmented reality (AR). J. Pen. Pendidik. IPA 2024, 10 (1), 346–359. https://doi.org/10.29303/jppipa.v10i1.5689