Analyzing essential oils: extraction and characterization from fresh and dry leaves of Pinus elliottii

Main Article Content

Leonardo Pratavieira Deo
Gabriela Aguiar Campolina
Cassia Duarte Oliveira
Kassy Jhones Garcia
Maria das Graças Cardoso

Abstract

Exploration of secondary metabolites, particularly essential oils, reveals diverse properties in antimicrobial, biological, and pharmaceutical contexts, including antibacterial, antifungal, and antiviral attributes, and applications in pest control and insect repellents. In the present work, essential oils were extracted from both fresh and dry leaves of Pinus elliottii, using hydrodistillation, followed by meticulous chemical characterization via gas chromatography coupled with a mass spectrometer. The plant leaves, sourced from a reforested area in the southern part of Minas Gerais, Brazil, formed the study's foundation. The main constituents identified in both essential oils were Germacrene D and β-Pinene. Germacrene D dominated in the essential oil from fresh foliage (47.71%), while β-Pinene prevailed in the essential oil from dry foliage (30.06%). Literature indicates that heightened Germacrene D levels may confer antibacterial and repellent properties, while elevated β-Pinene content aligns with various biological, medicinal, and pharmacological activities. Integrating our findings with existing literature, this work highlights potential applications for essential oils derived from both fresh and dry leaves of Pinus elliottii.

Metrics

Metrics Loading ...

Article Details

How to Cite
Deo, L. P., Aguiar Campolina, G. ., Oliveira, C. D., Garcia, K. J., & Cardoso, M. das G. . (2024). Analyzing essential oils: extraction and characterization from fresh and dry leaves of Pinus elliottii. Eclética Química, 49, e–1531. https://doi.org/10.26850/1678-4618.eq.v49.2024.e1531
Section
Original articles

References

Adams, R. P. Identification of Essential Oils Components by Gas Chromatography/Mass Spectroscopy. Allured Publishing Corporation, 2007.

Al-Ghanim, K. A.; Krishnappa, K.; Pandiyan, J.; Nicoletti, M.; Gurunathan, B.; Govindarajan, M. Insecticidal Potential of Matricaria chamomilla’s Essential Oil and Its Components (E)-β-Farnesene, Germacrene D, and α-Bisabolol Oxide A against Agricultural Pests, Malaria, and Zika Virus Vectors. Agric. 2023, 13, 779. https://doi.org/10.3390/agriculture13040779

Alma, M. H.; Nitz, S.; Kolmannsberger, H.; Digrak, M.; Efe, F. T.; Yilmaz, N. Chemical composition and antimicrobial activity of the essential oils from the gum of Turkish Pistachio (Pistacia vera l.). J. Agric. Food Chem. 2004, 52 (12), 3911–3914. https://doi.org/10.1021/jf040014e

Al-Saimary, I.; Bakr, S.; Khudaier, B.; Abass, Y. Efficiency of antibacterial agents extracted from Thymus vulgaris L. (Lamiaceae). Int. J. Nutr. Wellness. 2006, 4 (1), 1–5. https://doi.org/10.5580/269

Arya, S.; Kumar, R.; Prakash, O.; Rawat, A.; Mahawer, S. K.; Rawat, D. S.; de Oliveira, M. Hedychium coronarium J. Koenig: Traditional Uses, Phytochemistry, Biological Activities and Future Aspects. Curr. Org. Chem. 2022, 26 (18), 1676–1690. https://doi.org/10.2174/1385272827666221212161320

Awouafack, M. D.; Tane, P.; Kuete, V.; Eloff, J. N. 2 - Sesquiterpenes from the Medicinal Plants of Africa. In: Kuete, V., Ed., Medicinal plant research in Africa: pharmacology and chemistry. Elsevier, 2013; pp. 33–103. https://doi.org/10.1016/B978-0-12-405927-6.00002-3

Baptista-Silva, S.; Borges, S.; Ramos, O. L.; Pintado, M.; Sarmento, B. The progress of essential oils as potential therapeutic agents: a review. J. Essent. Oil Res. 2020, 32 (4), 279–295. https://doi.org/10.1080/10412905.2020.1746698

Burt, S. Essential oils: their antibacterial properties and potential applications in foods - a review. Int. J. Food Microbiol. 2004, 94 (3), 223–253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022

Chaieb, I.; Ben Hamouda, A.; Tayeb, W.; Zarrad, K.; Bouslema, T.; Laarif, A. The Tunisian Artemisia Essential Oil for Reducing Contamination of Stored Cereals by Tribolium castaneum. Food Technol. Biotechnol. 2018, 56 (2), 247–256. https://doi.org/10.17113/ftb.56.02.18.5414

Chakravarty, I.; Parmar, V. M.; Mandavgane, S. A. Current trends in essential oil (EO) production. Biomass Conv. Bioref. 2023, 13, 15311–15334. https://doi.org/10.1007/s13399-021-01963-3

El Asbahani, A.; Miladi, K.; Badri, W.; Sala, M.; Addi, E. H. A.; Casabianca, H.; El Mousadik, A.; Hartmann, D.; Jilale, A.; Renaud, F. N. R.; Elaissari, A. Essential oils: From extraction to encapsulation. Int. J. Pharm. 2015, 483 (1–2), 220–243. https://doi.org/10.1016/j.ijpharm.2014.12.069

El Mokni, R.; Majdoub, S.; Chaieb, I.; Jlassi, I.; Joshi, R. K.; Hammami, S. Chromatographic analysis, antimicrobial and insecticidal activities of the essential oil of Phlomis floccosa D. Don. Biomed Chromatogr. 2019, 33 (10). https://doi.org/10.1002/bmc.4603

Gobbo-Neto, L.; Lopes, N. P. Plantas medicinais: fatores de influência no conteúdo de metabólitos secundários. Quim Nova. 2007, 30 (2), 374–381. https://doi.org/10.1590/S0100-40422007000200026

Imanuddin, R.; Hidayat, A.; Rachmat, H. H.; Turjaman, M.; Pratiwi, P.; Nurfatriani, F.; Indrajaya, Y.; Susilowati, A. Reforestation and Sustainable Management of Pinus merkusii Forest Plantation in Indonesia: A Review. Forests. 2020, 11 (12), 1235. https://doi.org/10.3390/f11121235

Inouye, S.; Takizawa, T.; Yamaguchi, H. Antibacterial activity of essential oils and their major constituents against respiratory tract pathogens by gaseous contact. J. Antimicrob. Chemoth. 2001, 47 (5), 565–573. https://doi.org/10.1093/jac/47.5.565

Instituto Brasileiro de Geografia e Estatística (IBGE). Produção da Extração Vegetal e da Silvicultura (Pevs). IBGE, 2021.

Ioannou, E.; Koutsaviti, A.; Tzakou, O.; Roussis, V. The genus Pinus: a comparative study on the needle essential oil composition of 46 pine species. Phytochem. Rev. 2014, 13 (4), 741–768. https://doi.org/10.1007/s11101-014-9338-4

Jesus, R. M. The Need for Reforestation. In: International Workshop Large-Scale Reforestation. Corvallis, Oregon, United States, 1990.

Kilani, S.; Abdelwahed, A.; Ben Ammar, R.; Hayder, N.; Ghedira, K.; Chraief, I.; Hammami, M.; Chekir-Ghedira, L. Chemical composition, antibacterial and antimutagenic activities of essential oil from (Tunisian) Cyperus rotundus. J. Essent. Oil Res. 2005, 17 (6), 695–700. https://doi.org/10.1080/10412905.2005.9699035

Kurti, F.; Giorgi A.; Beretta, G.; Mustafa, B.; Gelmini, F.; Testa, C.; Angioletti, S.; Giupponi, L.; Zilio, E.; Pentimalli, D.; Hajdari, A. Chemical composition, antioxidant and antimicrobial activities of essential oils of different Pinus species from Kosovo. J. Essent. Oil Res. 2019, 31 (4), 263–275. https://doi.org/10.1080/10412905.2019.1584591

Lunguinho, A. D.; Cardoso, M. D.; Ferreira, V. R. F.; Konig, I. F. M.; Goncalves, R. R. P.; Brandao, R. M.; Rodrigues Silva Caetano, A.; Nelson, D. L.; Remedio, R. N. Acaricidal and repellent activity of the essential oils of Backhousia citriodora, Callistemon viminalis and Cinnamodendron dinisii against Rhipicephalus spp. Vet. Parasitol. 2021, 300, 109594. https://doi.org/10.1016/j.vetpar.2021.109594

Mayaud, L.; Carricajo, A.; Zhiri, A.; Aubert, G. Comparison of bacteriostatic and bactericidal activity of 13 essential oils against strains with varying sensitivity to antibiotics. Lett. Appl. Microbiol. 2008, 47 (3), 167–173. https://doi.org/10.1111/j.1472-765X.2008.02406.x

Modzelewska, A.; Sur, S.; Kumar, S. K.; Khan, S. R. Sesquiterpenes: natural products that decrease cancer growth. Curr. Med. Chem. Anticancer Agents. 2005, 5 (5), 477–499. https://doi.org/10.2174/1568011054866973

National Institute of Standards and Technology (NIST). Mass Spectral Library and Search/ Analysis Programs. NIST/EPA/NIH, 2010.

Ning, C.; Mueller, G. M.; Egerton-Warburton, L. M.; Xiang, W. H.; Yan, W. D. Host Phylogenetic Relatedness and Soil Nutrients Shape Ectomycorrhizal Community Composition in Native and Exotic Pine Plantations. Forests. 2019, 10 (3), 263. https://doi.org/10.3390/f10030263

Noge, K.; Becerra, J. X. Germacrene D, a common sesquiterpene in the genus Bursera (Burseraceae). Molecules. 2009, 14 (12), 5289–5297. https://doi.org/10.3390/molecules14125289

Oliveira-Tintino, C. D. M.; Pessoa, R. T.; Fernandes, M. N. M.; Alcântara, I. S.; Silva, B. A. F.; Oliveira, M. R. C.; de Menezes, I. R. A. Anti-inflammatory and anti-edematogenic action of the Croton campestris A. St.-Hil (Euphorbiaceae) essential oil and the compound β-caryophyllene in in vivo models. Phytomedicine. 2018, 41, 82–95. https://doi.org/10.1016/j.phymed.2018.02.004

Richardson, D. M.; Rundel, P. W.; Jackson, S. T.; Teskey, R. O.; Aronson, J.; Bytnerowicz, A.; Proches, S. Human impacts in pine forests: Past, present, and future. Annual Review of Ecology Evolution and Systematics. 2007, 38, 275–297. https://doi.org/10.1146/annurev.ecolsys.38.091206.095650

Salehi, B.; Upadhyay, S.; Erdogan Orhan, I.; Kumar Jugran, A.; Sharifi-Rad, J. Therapeutic Potential of α- and β-Pinene: A Miracle Gift of Nature. Biomol. 2019, 9 (11), 738. https://doi.org/10.3390/biom9110738

Satoh, K.; Nakahara, A.; Mukunoki, K.; Sugiyama, H.; Saito, H.; Kamigaito, M. Sustainable cycloolefin polymer from pine tree oil for optoelectronics material: living cationic polymerization of beta-pinene and catalytic hydrogenation of high-molecular-weight hydrogenated poly(beta-pinene). Polym Chem-UK. 2014, 5 (9), 3222–3230. https://doi.org/10.1039/C3PY01320K

Silva, A. C. R.; Lopes, P. M.; de Azevedo, M. M. B.; Costa, D. C. M.; Alviano, C. S.; Alviano, D. S. Biological Activities of alpha-Pinene and beta-Pinene Enantiomers. Molecules. 2012, 17 (6), 6305–6316. https://doi.org/10.3390/molecules17066305

Teixeira, M. L.; Cardoso, M. d. G.; Figueiredo, A. C. S.; Moraes, J. C.; Assis, F. A.; de Andrade, J.; de Albuquerque, L. R. M. Essential Oils from Lippia origanoides Kunth. and Mentha spicata L.: Chemical Composition, Insecticidal and Antioxidant Activities. Am. J. Plant. Sci. 2014, 5 (9), 1181–1190. https://doi.org/10.4236/ajps.2014.59131

Thomsett, M. R.; Moore, J. C.; Buchard, A.; Stockman, R. A.; Howdle, S. M. New renewably-sourced polyesters from limonene-derived monomers. Green Chem. 2019, 21 (1), 149–156. https://doi.org/10.1039/C8GC02957A

Tiwari, B. K.; Valdramidis, V. P.; O'Donnell, C. P.; Muthukumarappan, K.; Bourke, P.; Cullen, P. J. Application of Natural Antimicrobials for Food Preservation. J. Agr. Food Chem. 2009, 57 (14), 5987–6000. https://doi.org/10.1021/jf900668n

Van Den Dool, H.; Dec. Kratz, P. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr A. 1963, 11, 463–471. https://doi.org/10.1016/S0021-9673(01)80947-X

Van Der Werf, M. J.; de Bont, J. A. M.; Leak, D. J. Opportunities in microbial biotransformation of monoterpenes. In: Berger, R. G., et al. Biotechnology of Aroma Compounds: Advances in Biochemical Engineering/Biotechnology, vol 55. Springer, 1997; pp. 147–177. https://doi.org/10.1007/BFb0102065

Vespermann, K. A. C.; Paulino, B. N.; Barcelos, M. C. S.; Pessoa, M. G.; Pastore, G. M.; Molina, G. Biotransformation of alpha- and beta-pinene into flavor compounds. Appl. Microbiol. Biot. 2017, 101 (5), 1805–1817. https://doi.org/10.1007/s00253-016-8066-7

Warnke, P. H.; Becker, S. T.; Podschun, R.; Sivananthan, S.; Springer, I. N.; Russo, P. A. J.; Sherry, E. The battle against multi-resistant strains: Renaissance of antimicrobial essential oils as a promising force to fight hospital-acquired infections. J. Cranio. Maxill. Surg. 2009, 37 (7), 392–397. https://doi.org/10.1016/j.jcms.2009.03.017

Winnacker, M. Pinenes: Abundant and Renewable Building Blocks for a Variety of Sustainable Polymers. Angew Chem Weinheim Bergstr Ger. 2018, 57 (44), 14362–14371. https://doi.org/10.1002/anie.201804009

Zhou, J. Y.; Tang, F. D.; Mao, G. G.; Bian, R. I. Effect of alpha-pinene on nuclear translocation of NF-kappa B in THP-1 cells. Acta Pharm Sinic. 2004, 25 (4), 480–484.