Ni-Nb-Zr metastable phases formation, a thermodynamic and chemical approach.
Main Article Content
Abstract
Gibbs’ free energy of formation is considered a good guidance in order to describe or predict the phases formation within the standard state; however, many materials are produced out of their equilibrium conditions, and consequently, metastable phases are formed. There is no universal knowledge related to metastable phases formation; therefore, this paper presents considerations in order to elucidate some understanding about two metastable phases found in a rapid quenched alloy from Ni-Nb-Zr system during the solidification process. The analyzed alloy, namely Ni61.6Nb33.1Zr5.3 (at.%) was previously synthesized and characterized in two previous works. The hypotheses presented here consider free energies of formation among phases which compete to nucleate, stability of crystalline phases at nanoscale and atomic pair preferences during the nucleation. The understanding related to metastable phases formation may produce and improve promising technological materials.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
References
Chen, B.-R.; Sun, W.; Kitchaev, D. A.; Mangum, J. S.; Thampy, V.; Garten, L. M.; Ginley, D. S.; Gorman, B. P.; Stone, K. H.; Ceder, G.; Toney, M. F.; Schelhas, L. T. Understanding crystallization pathways leading to manganese oxide polymorph formation. Nat. Commun. 2018, 9, 2553. https://doi.org/10.1038/s41467-018-04917-y
Deo, L. P.; Oliveira, M. F. Accuracy of a selection criterion for glass forming ability in the Ni–Nb–Zr system. J. Alloys. Compd. 2014, 615 (Suppl. 1), S23–S28. https://doi.org/10.1016/J.JALLCOM.2013.11.194
Deo, L. P.; Oliveira, M. F. Metastable Phases Found in the Ni-Nb-Zr System. Mater. Charact. 2017, 127, 60–63. https://doi.org/10.1016/j.matchar.2017.03.001
Fan, C.; Li, C.; Inoue, A. Nanocrystal composites in Zr–Nb–Cu–Al metallic glasses. J. Non-Cryst. Solids. 2000, 270 (1–3), 28–33. https://doi.org/10.1016/S0022-3093(00)00078-8
Fang, T.; Kennedy, S. J.; Quan, L.; Hicks, T. J. The structure and paramagnetism of Ni3Nb. J. Phys. Condens. Matter. 1992, 4, 2405. https://doi.org/10.1088/0953-8984/4/10/007
Gibbs, J. W. On the Equilibrium of Heterogeneous Substances. Am. J. Sci. 1878, 96, 3. https://doi.org/10.11588/heidok.00013220
Hidalgo, J.; Huizenga, R. M.; Findley, K. O.; Santofimia, M. J. Interplay between metastable phases controls strength and ductility in steels. Mat Sci Eng A. 2019, 745, 185–194. https://doi.org/10.1016/J.MSEA.2018.12.096
Joubert, J.-M.; Černý, R.; Yvon, K.; Latroche, M.; Percheron-Guégan, A. Zirconium-Nickel, Zr7Ni10: Space Group Revision for the Stoichiometric Phase. Acta Crystallogr C. 1997, C53, 1536–1538. https://doi.org/10.1107/S0108270197007142
Joubert, J.-M.; R. Černý; Yvon, K.; Latroche, M.; Percheron-Guegan, A. Refinement of the Crystal Structure of Zirconium Nickel, Zr8Ni21. Z. Krist-New Cryst. St. 1998, 213, 227–228. https://doi.org/10.1524/NCRS.1998.213.14.227
Kube, S. A.; Schroers, J. Metastability in high entropy alloys. Scr. Mater. 2020, 186, 392–400. https://doi.org/10.1016/J.SCRIPTAMAT.2020.05.049
Li, Z., Pradeep, K. G.; Deng, Y.; Raabe, D.; Tasan, C. C. Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature. 2016, 534, 227–230. https://doi.org/10.1038/nature17981
Matsumoto, S.; Tokunaga, T.; Ohtani, H.; Hasebe, M. Thermodynamic Analysis of the Phase Equilibria of the Nb–Ni–Ti System. Mater Trans. 2005, 46 (12), 2920–2930. https://doi.org/10.2320/MATERTRANS.46.2920
Nash, P.; Nash, A. The Nb−Ni (Niobium-Nickel) system. Bull. Alloy. Phase Diagr. 1986, 7, 124–130. https://doi.org/10.1007/BF02881547
Navrotsky, A. Energetic clues to pathways to biomineralization: Precursors, clusters, and nanoparticles. Proc. Natl. Acad. Sci. U.S.A. 2004, 101 (33), 12096. https://doi.org/10.1073/PNAS.0404778101
Navrotsky, A. Nanoscale Effects on Thermodynamics and Phase Equilibria in Oxide Systems. ChemPhysChem. 2011, 12 (12), 2207–2215. https://doi.org/10.1002/CPHC.201100129
Okamoto, H. Ni-Zr (Nickel-Zirconium). J. Phase Equilib. Diffus. 2007, 28, 409. https://doi.org/10.1007/S11669-007-9120-Z
Olivotos, S.; Economou-Eliopoulos M. Gibbs Free Energy of Formation for Selected Platinum Group Minerals (PGM). Geosci. 2016, 6 (1), 2. https://doi.org/10.3390/GEOSCIENCES6010002
Sun, W.; Jayaraman, S.; Chen, W.; Persson, K. A.; Ceder, G. Nucleation of metastable aragonite CaCO3 in seawater. Proc. Natl. Acad. Sci. U.S.A. 2015, 112 (11), 3199–3204. https://doi.org/10.1073/PNAS.1423898112
Sun, W.; Dacek, S. T.; Ong, S. P.; Hautier, G.; Jain, A.; Richards W. D.; Gamst A. C.; Persson K. A.; Ceder, G. The thermodynamic scale of inorganiccrystalline metastability. Sci. Adv. 2016, 2 (11), e1600225. https://doi.org/10.1126/SCIADV.1600225
Tokunaga, T.; Matsumoto, S.; Ohtani, H.; Hasebe, M. Thermodynamic Analysis of the Phase Equilibria in the Nb-Ni-Zr System. Mater. Trans. 2007, 48 (9), 2263–2271. https://doi.org/10.2320/matertrans.MB200713
Trexler, M. M.; Thadhani N. N. Mechanical properties of bulk metallic glasses. Prog. Mater. Sci. 2010, 55 (8), 759–839. https://doi.org/10.1016/J.PMATSCI.2010.04.002
Wang, C. X.; Yang, G. W. Thermodynamics of metastable phase nucleation at the nanoscale. Mater. Sci. Eng. R Rep. 2005, 49 (6), 157–202. https://doi.org/10.1016/J.MSER.2005.06.002
Wang, J.; Qin, J.; Zhou, J.; Cheng, K., Zhan, C.; Zhang, S.; Zhao, G.; Li, X.; Shen, K; Zhou, Y. Correlation between mixing enthalpy and structural order in liquid Mg−Si system. T. Nonferr. Metal. Soc. 2021, 31 (3), 853–864. https://doi.org/10.1016/S1003-6326(21)65544-9
Yamaura, S.; Sakurai, M.; Hasegawa, M.; Wakoh, K.; Shimpo, Y.; Nishida, M.; Kimura, H.; Matsubara, E.; Inoue, A. Hydrogen permeation and structural features of melt-spun Ni–Nb–Zr amorphous alloys. Acta Mater. 2005, 53 (13), 3703–3711. https://doi.org/10.1016/j.actamat.2005.04.023
Zaitsev, A. I.; Zaitseva, N. E.; Shakhpazov E. K.; Kodentsov, A. A. Thermodynamic Properties and Phase Equilibria in the Nickel–Zirconium System. The Liquid to Amorphous State Transition. Phys. Chem. Chem. Phys. 2002, 4 (24), 6047–6058. https://doi.org/10.1039/B201036B
Zhang, Y.; Zhou,Y. J.; Lin, J. P.; Chen, G. L.; Liaw, P. K. Solid-Solution Phase Formation Rules for Multi-Component Alloys. Adv. Eng. Mater. 2008, 10 (6), 534–538. https://doi.org/10.1002/adem.200700240