Ni-Nb-Zr metastable phases formation, a thermodynamic and chemical approach.

Main Article Content

Leonardo Pratvieira Deo

Abstract

Gibbs’ free energy of formation is considered a good guidance in order to describe or predict the phases formation within the standard state; however, many materials are produced out of their equilibrium conditions, and consequently, metastable phases are formed. There is no universal knowledge related to metastable phases formation; therefore, this paper presents considerations in order to elucidate some understanding about two metastable phases found in a rapid quenched alloy from Ni-Nb-Zr system during the solidification process. The analyzed alloy, namely Ni61.6Nb33.1Zr5.3 (at.%) was previously synthesized and characterized in two previous works. The hypotheses presented here consider free energies of formation among phases which compete to nucleate, stability of crystalline phases at nanoscale and atomic pair preferences during the nucleation. The understanding related to metastable phases formation may produce and improve promising technological materials.

Metrics

Metrics Loading ...

Article Details

How to Cite
Deo, L. P. (2022). Ni-Nb-Zr metastable phases formation, a thermodynamic and chemical approach. Eclética Química, 47(2), 97–102. https://doi.org/10.26850/1678-4618eqj.v47.2.2022.p97-102
Section
Short review

References

Chen, B.-R.; Sun, W.; Kitchaev, D. A.; Mangum, J. S.; Thampy, V.; Garten, L. M.; Ginley, D. S.; Gorman, B. P.; Stone, K. H.; Ceder, G.; Toney, M. F.; Schelhas, L. T. Understanding crystallization pathways leading to manganese oxide polymorph formation. Nat. Commun. 2018, 9, 2553. https://doi.org/10.1038/s41467-018-04917-y

Deo, L. P.; Oliveira, M. F. Accuracy of a selection criterion for glass forming ability in the Ni–Nb–Zr system. J. Alloys. Compd. 2014, 615 (Suppl. 1), S23–S28. https://doi.org/10.1016/J.JALLCOM.2013.11.194

Deo, L. P.; Oliveira, M. F. Metastable Phases Found in the Ni-Nb-Zr System. Mater. Charact. 2017, 127, 60–63. https://doi.org/10.1016/j.matchar.2017.03.001

Fan, C.; Li, C.; Inoue, A. Nanocrystal composites in Zr–Nb–Cu–Al metallic glasses. J. Non-Cryst. Solids. 2000, 270 (1–3), 28–33. https://doi.org/10.1016/S0022-3093(00)00078-8

Fang, T.; Kennedy, S. J.; Quan, L.; Hicks, T. J. The structure and paramagnetism of Ni3Nb. J. Phys. Condens. Matter. 1992, 4, 2405. https://doi.org/10.1088/0953-8984/4/10/007

Gibbs, J. W. On the Equilibrium of Heterogeneous Substances. Am. J. Sci. 1878, 96, 3. https://doi.org/10.11588/heidok.00013220

Hidalgo, J.; Huizenga, R. M.; Findley, K. O.; Santofimia, M. J. Interplay between metastable phases controls strength and ductility in steels. Mat Sci Eng A. 2019, 745, 185–194. https://doi.org/10.1016/J.MSEA.2018.12.096

Joubert, J.-M.; Černý, R.; Yvon, K.; Latroche, M.; Percheron-Guégan, A. Zirconium-Nickel, Zr7Ni10: Space Group Revision for the Stoichiometric Phase. Acta Crystallogr C. 1997, C53, 1536–1538. https://doi.org/10.1107/S0108270197007142

Joubert, J.-M.; R. Černý; Yvon, K.; Latroche, M.; Percheron-Guegan, A. Refinement of the Crystal Structure of Zirconium Nickel, Zr8Ni21. Z. Krist-New Cryst. St. 1998, 213, 227–228. https://doi.org/10.1524/NCRS.1998.213.14.227

Kube, S. A.; Schroers, J. Metastability in high entropy alloys. Scr. Mater. 2020, 186, 392–400. https://doi.org/10.1016/J.SCRIPTAMAT.2020.05.049

Li, Z., Pradeep, K. G.; Deng, Y.; Raabe, D.; Tasan, C. C. Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature. 2016, 534, 227–230. https://doi.org/10.1038/nature17981

Matsumoto, S.; Tokunaga, T.; Ohtani, H.; Hasebe, M. Thermodynamic Analysis of the Phase Equilibria of the Nb–Ni–Ti System. Mater Trans. 2005, 46 (12), 2920–2930. https://doi.org/10.2320/MATERTRANS.46.2920

Nash, P.; Nash, A. The Nb−Ni (Niobium-Nickel) system. Bull. Alloy. Phase Diagr. 1986, 7, 124–130. https://doi.org/10.1007/BF02881547

Navrotsky, A. Energetic clues to pathways to biomineralization: Precursors, clusters, and nanoparticles. Proc. Natl. Acad. Sci. U.S.A. 2004, 101 (33), 12096. https://doi.org/10.1073/PNAS.0404778101

Navrotsky, A. Nanoscale Effects on Thermodynamics and Phase Equilibria in Oxide Systems. ChemPhysChem. 2011, 12 (12), 2207–2215. https://doi.org/10.1002/CPHC.201100129

Okamoto, H. Ni-Zr (Nickel-Zirconium). J. Phase Equilib. Diffus. 2007, 28, 409. https://doi.org/10.1007/S11669-007-9120-Z

Olivotos, S.; Economou-Eliopoulos M. Gibbs Free Energy of Formation for Selected Platinum Group Minerals (PGM). Geosci. 2016, 6 (1), 2. https://doi.org/10.3390/GEOSCIENCES6010002

Sun, W.; Jayaraman, S.; Chen, W.; Persson, K. A.; Ceder, G. Nucleation of metastable aragonite CaCO3 in seawater. Proc. Natl. Acad. Sci. U.S.A. 2015, 112 (11), 3199–3204. https://doi.org/10.1073/PNAS.1423898112

Sun, W.; Dacek, S. T.; Ong, S. P.; Hautier, G.; Jain, A.; Richards W. D.; Gamst A. C.; Persson K. A.; Ceder, G. The thermodynamic scale of inorganiccrystalline metastability. Sci. Adv. 2016, 2 (11), e1600225. https://doi.org/10.1126/SCIADV.1600225

Tokunaga, T.; Matsumoto, S.; Ohtani, H.; Hasebe, M. Thermodynamic Analysis of the Phase Equilibria in the Nb-Ni-Zr System. Mater. Trans. 2007, 48 (9), 2263–2271. https://doi.org/10.2320/matertrans.MB200713

Trexler, M. M.; Thadhani N. N. Mechanical properties of bulk metallic glasses. Prog. Mater. Sci. 2010, 55 (8), 759–839. https://doi.org/10.1016/J.PMATSCI.2010.04.002

Wang, C. X.; Yang, G. W. Thermodynamics of metastable phase nucleation at the nanoscale. Mater. Sci. Eng. R Rep. 2005, 49 (6), 157–202. https://doi.org/10.1016/J.MSER.2005.06.002

Wang, J.; Qin, J.; Zhou, J.; Cheng, K., Zhan, C.; Zhang, S.; Zhao, G.; Li, X.; Shen, K; Zhou, Y. Correlation between mixing enthalpy and structural order in liquid Mg−Si system. T. Nonferr. Metal. Soc. 2021, 31 (3), 853–864. https://doi.org/10.1016/S1003-6326(21)65544-9

Yamaura, S.; Sakurai, M.; Hasegawa, M.; Wakoh, K.; Shimpo, Y.; Nishida, M.; Kimura, H.; Matsubara, E.; Inoue, A. Hydrogen permeation and structural features of melt-spun Ni–Nb–Zr amorphous alloys. Acta Mater. 2005, 53 (13), 3703–3711. https://doi.org/10.1016/j.actamat.2005.04.023

Zaitsev, A. I.; Zaitseva, N. E.; Shakhpazov E. K.; Kodentsov, A. A. Thermodynamic Properties and Phase Equilibria in the Nickel–Zirconium System. The Liquid to Amorphous State Transition. Phys. Chem. Chem. Phys. 2002, 4 (24), 6047–6058. https://doi.org/10.1039/B201036B

Zhang, Y.; Zhou,Y. J.; Lin, J. P.; Chen, G. L.; Liaw, P. K. Solid-Solution Phase Formation Rules for Multi-Component Alloys. Adv. Eng. Mater. 2008, 10 (6), 534–538. https://doi.org/10.1002/adem.200700240