Surfactant effects in the morphology and the photocatalytic activity of the BaMoO4 crystals

Main Article Content

Amanda Fernandes Gouveia
Gustavo Venancio Bellucci
Lara Kelly Ribeiro
Marcelo Assis
Ieda Lúcia Viana Rosa
Elson Longo
Juan Andrés
Miguel Angel San-Miguel

Abstract

This paper discloses the effect of the surfactant sodium dodecyl sulfate (SDS) in the morphology and the photocatalytic activity of BaMoO4 crystals. Experimental techniques were applied to study the order-disorder degree of the samples. First-principles calculations were performed at density functional theory level with the B3LYP hybrid functional. The morphologies were investigated by field emission scanning electron microscopy, and the theoretical crystal shapes were obtained through the Wulff construction. The photocatalytic activity efficiency of the BaMoO4 crystals was tested against the Rhodamine B (RhB) dye. In this paper, BaMoO4 synthesized with SDS by the coprecipitation method presented a monophasic crystal with a disordered structure. In addition, the presence of this surfactant generated pores on the surfaces of the material, and those pores were responsible for the appearance of the adsorptive ability enhancing the adsorption process of the RhB dye in the dark, in absence of ultraviolet light.

Metrics

Metrics Loading ...

Article Details

How to Cite
Gouveia, A. F., Bellucci, G. V., Ribeiro, L. K., Assis, M., Rosa, I. L. V., Longo, E., Andrés, J., & San-Miguel, M. A. (2022). Surfactant effects in the morphology and the photocatalytic activity of the BaMoO4 crystals. Eclética Química, 47(1SI), 80–89. https://doi.org/10.26850/1678-4618eqj.v47.1SI.2022.p80-89
Section
Original articles

Funding data

References

Andrés, J.; Gracia, L.; Gouveia, A. F.; Ferrer, M. M.; Longo, E. Effects of surface stability on the morphological transformation of metals and metal oxides as investigated by first-principles calculations. Nanotechnology 2015, 26 (40), 405703. https://doi.org/10.1088/0957-4484/26/40/405703

Becke, A. D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic-Behavior. Phys. Rev. A 1988, 38, 3098–3100. https://doi.org/10.1103/PhysRevA.38.3098

Becke, A. D. Density-Functional Thermochemistry .3. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. https://doi.org/10.1063/1.464913

Chankhanittha, T.; Somaudon, V.; Watcharakitti, J.; Nanan, S. Solar light-driven photocatalyst based on bismuth molybdate (Bi4MoO9) for detoxification of anionic azo dyes in wastewater. J. Mater. Sci.: Mater. Electron. 2021, 32, 1977–1991. https://doi.org/10.1007/s10854-020-04965-5

Christofilos, D.; Arvanitidis, J.; Kampasakali, E.; Papagelis, K.; Ves, S.; Kourouklis, G. A. High pressure Raman study of BaMoO4. Phys. Status Solidi B 2004, 241 (14), 3155–3160. https://doi.org/10.1002/pssb.200405234

Dovesi, R.; Saunders, V. R.; Roetti, C.; Orlando, R.; Zicovich-Wilson, C. M.; Pascale, F.; Civalleri, B.; Doll, K.; Harrison, N. M.; Bush, I. J.; D'Arco, P.; Llunel, M.; Causà, M.; Noël, Y.; Maschio, L.; Erba, A.; Rerat, M.; Casassa, S. CRYSTAL17 User's Manual; University of Torino, 2017.

Dovesi, R.; Erba, A.; Orlando, R.; Zicovich-Wilson, C. M.; Civalleri, B.; Maschio, L.; Rerat, M.; Casassa, S.; Baima, J.; Salustro, S.; Kirtman, B. Quantum-mechanical condensed matter simulations with CRYSTAL. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8 (4), e1360. https://doi.org/10.1002/wcms.1360

Farahpour, M.; Arvand, M. Single-pot hydrothermal synthesis of copper molybdate nanosheet arrays as electrode materials for high areal-capacitance supercapacitor. J. Energy Storage 2021, 40, 102742. https://doi.org/10.1016/j.est.2021.102742

Hu, X.; Jiang, S.; Fu, S.; Xie, J.; Zhong, L.; Chen, M.; Xiang, G.; Wang, Y.; Li, L.; Zhou, X. Opposite temperature luminescent behaviours of Tb3+ and Pr3+ co-doped BaMoO4 glass ceramics for temperature sensing. J. Lumin. 2021, 236, 118080. https://doi.org/10.1016/j.jlumin.2021.118080

Ji, T.; Ha, E.; Wu, M. Z.; Hu, X.; Wang, J.; Sun, Y. A.; Li, S. J.; Hu, J. Q. Controllable Hydrothermal Synthesis and Photocatalytic Performance of Bi2MoO6 Nano/Microstructures. Catalysts 2020, 10. https://doi.org/10.3390/catal10101161

Keerthana, S. P.; Rani, B. J.; Yuvakkumar, R.; Ravi, G.; Shivatharsiny, Y.; Babu, E. S.; Almoallim, H. S.; Alharbi, S. A.; Velauthapillai, D. Copper molybdate nanoparticles for electrochemical water splitting application. Int. J. Hydrogen Energy 2021, 46 (11), 7701–7711. https://doi.org/10.1016/j.ijhydene.2020.12.029

Keshari, A. S.; Dubey, P. Rapid microwave-assisted vs. hydrothermal synthesis of hierarchical sheet-like NiO/NiMoO4 hybrid nanostructures for high performance extrinsic pseudocapacitor application. J. Energy Storage 2021, 40, 102629. https://doi.org/10.1016/j.est.2021.102629

Khan, A.; Daniel, J.; Tyagi, M.; Kim, H. J.; Lee, M. H.; Kim, Y. Czochralski growth, electronic structure, luminescence and scintillation properties of Cs2Mo3O10: A new scintillation crystal for 0νββ decay search. J. Alloys Compd. 2020, 821, 153466. https://doi.org/10.1016/j.jallcom.2019.153466

Kianpour, G.; Salavati-Niasari, M.; Emadi, H. Precipitation synthesis and characterization of cobalt molybdates nanostructures. Superlattices Microstruct. 2013, 58, 120–129. https://doi.org/10.1016/j.spmi.2013.01.014

Kianpour, G.; Soofivand, F.; Badiei, M.; Salavati-Niasari, M.; Hamadanian, M. Facile synthesis and characterization of nickel molybdate nanorods as an effective photocatalyst by co-precipitation method. J. Mater. Sci.: Mater. Electron. 2016, 27, 10244–10251. https://doi.org/10.1007/s10854-016-5103-3

Kumar, V.; Chen, J.; Li, S.; Matz, S.; Bhavanasi, V.; Parida, K.; Al-Shamery, K.; Lee, P. S. Tri-rutile layered niobium-molybdates for all solid-state symmetric supercapacitors. J. Mater. Chem. A 2020, 8 (38), 20141–20150. https://doi.org/10.1039/D0TA03678A

Lakhlifi, H.; El Jabbar, Y.; El Ouatib, R.; Er-Rakho, L.; Durand, B.; Guillemet- Fritsch, S. Synthesis of molybdates Zn1-xCoxMoO4 (0 ≤ x ≤ 1), by decomposition of the precursors developed by the glycine-nitrate process (GNP), and their characterization. Mater. Sci. Semicon. Proc. 2020, 114, 105054. https://doi.org/10.1016/j.mssp.2020.105054

Luo, Z.; Li, H.; Shu, H.; Wang, K.; Xia, J.; Yan, Y. Synthesis of BaMoO4 Nestlike Nanostructures Under a New Growth Mechanism. Cryst. Growth Des. 2008, 8 (7), 2275–2281. https://doi.org/10.1021/cg700967y

Luo, Y.-S.; Dai, X.-J.; Zhang, W.-D.; Yang, Y.; Sun, C. Q.; Fu, S.-Y. Controllable synthesis and luminescent properties of novel erythrocyte-like CaMoO4 hierarchical nanostructures via a simple surfactant-free hydrothermal route. Dalton Trans. 2010, 39 (9), 2226–2231. https://doi.org/10.1039/B915099D

Macedo, N. G.; Gouveia, A. F.; Roca, R. A.; Assis, M.; Gracia, L.; Andrés, J.; Leite, E. R.; Longo, E. Surfactant-Mediated Morphology and Photocatalytic Activity of α-Ag2WO4 Material. J. Phys. Chem. C 2018, 122 (15), 8667–8679. https://doi.org/10.1021/acs.jpcc.8b01898

Oliveira, M. C.; Gracia, L.; Nogueira, I. C.; Gurgel, M. F. C.; Mercury, J. M. R.; Longo, E.; Andres, J. On the morphology of BaMoO4 crystals: A theoretical and experimental approach. Cryst. Res. Technol. 2016, 51 (10), 634–644. https://doi.org/10.1002/crat.201600227

Oliveira, F. K. F.; Santiago, A. A. G.; Catto, A. C.; Silva, L. F.; Tranquilin, R. L.; Longo, E.; Motta, F. V.; Bomio, M. R. D. Cerium molybdate nanocrystals: Microstructural, optical and gas-sensing properties. J. Alloys Compd. 2021, 857, 157562. https://doi.org/10.1016/j.jallcom.2020.157562

Panchal, V.; Garg, N.; Sharma, S. M. Raman and x-ray diffraction investigations on BaMoO4 under high pressures. J. Phys.: Condens. Matter 2006, 18 (16), 3917. https://doi.org/10.1088/0953-8984/18/16/002

Pereira, W. S.; Sczancoski, J. C.; Longo, E. Tailoring the photoluminescence of BaMoO4 and BaWO4 hierarchical architectures via precipitation induced by a fast precursor injection. Mater. Lett. 2021, 293, 129681. https://doi.org/10.1016/j.matlet.2021.129681

Ray, S. K.; Dhakal, D.; Regmi, C.; Yamaguchui, T.; Lee, S. W. Inactivation of Staphylococcus aureus in visible light by morphology tuned α-NiMoO4. J. Photochem. Photobiol. A 2018, 350, 59–68. https://doi.org/10.1016/j.jphotochem.2017.09.042

Sczancoski, J. C.; Cavalcante, L. S.; Marana, N. L.; Silva, R. O.; Tranquilin, R. L.; Joya, M. R.; Pizani, P. S.; Varela, J. A.; Sambrano, J. R.; Li, M. S.; Longo, E.; Andres, J. Curr. Appl. Phys. 2010, 10 (2), 614–624. https://doi.org/10.1016/j.cap.2009.08.006

Silva Junior, J. L.; Nobre, F. X.; Freitas, F. A.; Carvalho, T. A. F.; Barros, S. S.; Nascimento, M. C.; Manzato, L.; Matos, J. M. E.; Brito, W. R.; Leyet, Y.; Couceiro, P. R. C. Copper molybdate synthesized by sonochemistry route at room temperature as an efficient solid catalyst for esterification of oleic acid. Ultrason. Sonochem. 2021, 73, 105541. https://doi.org/10.1016/j.ultsonch.2021.105541

Silva, M. V.; Oliveira, D. F. M.; Oliveira, H. S.; Siqueira, K. P. F. Influence of temperature on the structural and color properties of nickel molybdates. Mater. Res. Bull. 2020, 122, 110665. https://doi.org/10.1016/j.materresbull.2019.110665

Skutina, L.; Filonova, E.; Medvedev, D.; Maignan, A. Undoped Sr2MMoO6 Double Perovskite Molybdates (M = Ni, Mg, Fe) as Promising Anode Materials for Solid Oxide Fuel Cells. Materials 2021, 14 (7), 1715. https://doi.org/10.3390/ma14071715

Spassky, D.; Ivanov, S.; Kitaeva, I.; Kolobanov, V.; Mikhailin, V.; Ivleva, L.; Voronina, I. Optical and luminescent properties of a series of molybdate single crystals of scheelite crystal structure. Phys. Status Solidi C 2005, 2 (1), 65–68. https://doi.org/10.1002/pssc.200460112

Tang, C.; Wang, H.; Hong, Y.; Xu, W.; Shi, Q.; Liu, Z. Roughness induced wettability amplification of novel copper molybdate-branched CuO nanorod arrays by non-aqueous solution method. Mater. Lett. 2021, 300, 130260. https://doi.org/10.1016/j.matlet.2021.130260

Theiss, F. L.; Ayoko, G. A.; Frost, R. L. Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+ and Al3+ layer cations by co-precipitation methods—A review. Appl. Surf. Sci. 2016, 383, 200–213. https://doi.org/10.1016/j.apsusc.2016.04.150

Wood, D. L.; Tauc, J. Weak Absorption Tails in Amorphous Semiconductors. Phys. Rev. B 1972, 5, 3144. https://doi.org/10.1103/PhysRevB.5.3144

Wulff, G. XXV. Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Krystallflächen. Zeitschrift für Kristallographie - Crystalline Materials 1901,34 (1–6). https://doi.org/10.1524/zkri.1901.34.1.449

Xia, Z.; Chen, D. Synthesis and Luminescence Properties of BaMoO4:Sm3+ Phosphors. J. Am. Ceram. Soc. 2010, 93 (5), 1397–1401. https://doi.org/10.1111/j.1551-2916.2009.03574.x