Surfactant effects in the morphology and the photocatalytic activity of the BaMoO4 crystals
Main Article Content
Abstract
This paper discloses the effect of the surfactant sodium dodecyl sulfate (SDS) in the morphology and the photocatalytic activity of BaMoO4 crystals. Experimental techniques were applied to study the order-disorder degree of the samples. First-principles calculations were performed at density functional theory level with the B3LYP hybrid functional. The morphologies were investigated by field emission scanning electron microscopy, and the theoretical crystal shapes were obtained through the Wulff construction. The photocatalytic activity efficiency of the BaMoO4 crystals was tested against the Rhodamine B (RhB) dye. In this paper, BaMoO4 synthesized with SDS by the coprecipitation method presented a monophasic crystal with a disordered structure. In addition, the presence of this surfactant generated pores on the surfaces of the material, and those pores were responsible for the appearance of the adsorptive ability enhancing the adsorption process of the RhB dye in the dark, in absence of ultraviolet light.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
Funding data
-
Fundação de Amparo à Pesquisa do Estado de São Paulo
Grant numbers 2013/07296-2;2016/23891-6;2017/26105-4;2019/01732-1 -
Financiadora de Estudos e Projetos
Grant numbers . -
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Grant numbers 166281/2017-4;305792/2020-2 -
Generalitat Valenciana
Grant numbers BEST/2021/048
References
Andrés, J.; Gracia, L.; Gouveia, A. F.; Ferrer, M. M.; Longo, E. Effects of surface stability on the morphological transformation of metals and metal oxides as investigated by first-principles calculations. Nanotechnology 2015, 26 (40), 405703. https://doi.org/10.1088/0957-4484/26/40/405703
Becke, A. D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic-Behavior. Phys. Rev. A 1988, 38, 3098–3100. https://doi.org/10.1103/PhysRevA.38.3098
Becke, A. D. Density-Functional Thermochemistry .3. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. https://doi.org/10.1063/1.464913
Chankhanittha, T.; Somaudon, V.; Watcharakitti, J.; Nanan, S. Solar light-driven photocatalyst based on bismuth molybdate (Bi4MoO9) for detoxification of anionic azo dyes in wastewater. J. Mater. Sci.: Mater. Electron. 2021, 32, 1977–1991. https://doi.org/10.1007/s10854-020-04965-5
Christofilos, D.; Arvanitidis, J.; Kampasakali, E.; Papagelis, K.; Ves, S.; Kourouklis, G. A. High pressure Raman study of BaMoO4. Phys. Status Solidi B 2004, 241 (14), 3155–3160. https://doi.org/10.1002/pssb.200405234
Dovesi, R.; Saunders, V. R.; Roetti, C.; Orlando, R.; Zicovich-Wilson, C. M.; Pascale, F.; Civalleri, B.; Doll, K.; Harrison, N. M.; Bush, I. J.; D'Arco, P.; Llunel, M.; Causà, M.; Noël, Y.; Maschio, L.; Erba, A.; Rerat, M.; Casassa, S. CRYSTAL17 User's Manual; University of Torino, 2017.
Dovesi, R.; Erba, A.; Orlando, R.; Zicovich-Wilson, C. M.; Civalleri, B.; Maschio, L.; Rerat, M.; Casassa, S.; Baima, J.; Salustro, S.; Kirtman, B. Quantum-mechanical condensed matter simulations with CRYSTAL. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8 (4), e1360. https://doi.org/10.1002/wcms.1360
Farahpour, M.; Arvand, M. Single-pot hydrothermal synthesis of copper molybdate nanosheet arrays as electrode materials for high areal-capacitance supercapacitor. J. Energy Storage 2021, 40, 102742. https://doi.org/10.1016/j.est.2021.102742
Hu, X.; Jiang, S.; Fu, S.; Xie, J.; Zhong, L.; Chen, M.; Xiang, G.; Wang, Y.; Li, L.; Zhou, X. Opposite temperature luminescent behaviours of Tb3+ and Pr3+ co-doped BaMoO4 glass ceramics for temperature sensing. J. Lumin. 2021, 236, 118080. https://doi.org/10.1016/j.jlumin.2021.118080
Ji, T.; Ha, E.; Wu, M. Z.; Hu, X.; Wang, J.; Sun, Y. A.; Li, S. J.; Hu, J. Q. Controllable Hydrothermal Synthesis and Photocatalytic Performance of Bi2MoO6 Nano/Microstructures. Catalysts 2020, 10. https://doi.org/10.3390/catal10101161
Keerthana, S. P.; Rani, B. J.; Yuvakkumar, R.; Ravi, G.; Shivatharsiny, Y.; Babu, E. S.; Almoallim, H. S.; Alharbi, S. A.; Velauthapillai, D. Copper molybdate nanoparticles for electrochemical water splitting application. Int. J. Hydrogen Energy 2021, 46 (11), 7701–7711. https://doi.org/10.1016/j.ijhydene.2020.12.029
Keshari, A. S.; Dubey, P. Rapid microwave-assisted vs. hydrothermal synthesis of hierarchical sheet-like NiO/NiMoO4 hybrid nanostructures for high performance extrinsic pseudocapacitor application. J. Energy Storage 2021, 40, 102629. https://doi.org/10.1016/j.est.2021.102629
Khan, A.; Daniel, J.; Tyagi, M.; Kim, H. J.; Lee, M. H.; Kim, Y. Czochralski growth, electronic structure, luminescence and scintillation properties of Cs2Mo3O10: A new scintillation crystal for 0νββ decay search. J. Alloys Compd. 2020, 821, 153466. https://doi.org/10.1016/j.jallcom.2019.153466
Kianpour, G.; Salavati-Niasari, M.; Emadi, H. Precipitation synthesis and characterization of cobalt molybdates nanostructures. Superlattices Microstruct. 2013, 58, 120–129. https://doi.org/10.1016/j.spmi.2013.01.014
Kianpour, G.; Soofivand, F.; Badiei, M.; Salavati-Niasari, M.; Hamadanian, M. Facile synthesis and characterization of nickel molybdate nanorods as an effective photocatalyst by co-precipitation method. J. Mater. Sci.: Mater. Electron. 2016, 27, 10244–10251. https://doi.org/10.1007/s10854-016-5103-3
Kumar, V.; Chen, J.; Li, S.; Matz, S.; Bhavanasi, V.; Parida, K.; Al-Shamery, K.; Lee, P. S. Tri-rutile layered niobium-molybdates for all solid-state symmetric supercapacitors. J. Mater. Chem. A 2020, 8 (38), 20141–20150. https://doi.org/10.1039/D0TA03678A
Lakhlifi, H.; El Jabbar, Y.; El Ouatib, R.; Er-Rakho, L.; Durand, B.; Guillemet- Fritsch, S. Synthesis of molybdates Zn1-xCoxMoO4 (0 ≤ x ≤ 1), by decomposition of the precursors developed by the glycine-nitrate process (GNP), and their characterization. Mater. Sci. Semicon. Proc. 2020, 114, 105054. https://doi.org/10.1016/j.mssp.2020.105054
Luo, Z.; Li, H.; Shu, H.; Wang, K.; Xia, J.; Yan, Y. Synthesis of BaMoO4 Nestlike Nanostructures Under a New Growth Mechanism. Cryst. Growth Des. 2008, 8 (7), 2275–2281. https://doi.org/10.1021/cg700967y
Luo, Y.-S.; Dai, X.-J.; Zhang, W.-D.; Yang, Y.; Sun, C. Q.; Fu, S.-Y. Controllable synthesis and luminescent properties of novel erythrocyte-like CaMoO4 hierarchical nanostructures via a simple surfactant-free hydrothermal route. Dalton Trans. 2010, 39 (9), 2226–2231. https://doi.org/10.1039/B915099D
Macedo, N. G.; Gouveia, A. F.; Roca, R. A.; Assis, M.; Gracia, L.; Andrés, J.; Leite, E. R.; Longo, E. Surfactant-Mediated Morphology and Photocatalytic Activity of α-Ag2WO4 Material. J. Phys. Chem. C 2018, 122 (15), 8667–8679. https://doi.org/10.1021/acs.jpcc.8b01898
Oliveira, M. C.; Gracia, L.; Nogueira, I. C.; Gurgel, M. F. C.; Mercury, J. M. R.; Longo, E.; Andres, J. On the morphology of BaMoO4 crystals: A theoretical and experimental approach. Cryst. Res. Technol. 2016, 51 (10), 634–644. https://doi.org/10.1002/crat.201600227
Oliveira, F. K. F.; Santiago, A. A. G.; Catto, A. C.; Silva, L. F.; Tranquilin, R. L.; Longo, E.; Motta, F. V.; Bomio, M. R. D. Cerium molybdate nanocrystals: Microstructural, optical and gas-sensing properties. J. Alloys Compd. 2021, 857, 157562. https://doi.org/10.1016/j.jallcom.2020.157562
Panchal, V.; Garg, N.; Sharma, S. M. Raman and x-ray diffraction investigations on BaMoO4 under high pressures. J. Phys.: Condens. Matter 2006, 18 (16), 3917. https://doi.org/10.1088/0953-8984/18/16/002
Pereira, W. S.; Sczancoski, J. C.; Longo, E. Tailoring the photoluminescence of BaMoO4 and BaWO4 hierarchical architectures via precipitation induced by a fast precursor injection. Mater. Lett. 2021, 293, 129681. https://doi.org/10.1016/j.matlet.2021.129681
Ray, S. K.; Dhakal, D.; Regmi, C.; Yamaguchui, T.; Lee, S. W. Inactivation of Staphylococcus aureus in visible light by morphology tuned α-NiMoO4. J. Photochem. Photobiol. A 2018, 350, 59–68. https://doi.org/10.1016/j.jphotochem.2017.09.042
Sczancoski, J. C.; Cavalcante, L. S.; Marana, N. L.; Silva, R. O.; Tranquilin, R. L.; Joya, M. R.; Pizani, P. S.; Varela, J. A.; Sambrano, J. R.; Li, M. S.; Longo, E.; Andres, J. Curr. Appl. Phys. 2010, 10 (2), 614–624. https://doi.org/10.1016/j.cap.2009.08.006
Silva Junior, J. L.; Nobre, F. X.; Freitas, F. A.; Carvalho, T. A. F.; Barros, S. S.; Nascimento, M. C.; Manzato, L.; Matos, J. M. E.; Brito, W. R.; Leyet, Y.; Couceiro, P. R. C. Copper molybdate synthesized by sonochemistry route at room temperature as an efficient solid catalyst for esterification of oleic acid. Ultrason. Sonochem. 2021, 73, 105541. https://doi.org/10.1016/j.ultsonch.2021.105541
Silva, M. V.; Oliveira, D. F. M.; Oliveira, H. S.; Siqueira, K. P. F. Influence of temperature on the structural and color properties of nickel molybdates. Mater. Res. Bull. 2020, 122, 110665. https://doi.org/10.1016/j.materresbull.2019.110665
Skutina, L.; Filonova, E.; Medvedev, D.; Maignan, A. Undoped Sr2MMoO6 Double Perovskite Molybdates (M = Ni, Mg, Fe) as Promising Anode Materials for Solid Oxide Fuel Cells. Materials 2021, 14 (7), 1715. https://doi.org/10.3390/ma14071715
Spassky, D.; Ivanov, S.; Kitaeva, I.; Kolobanov, V.; Mikhailin, V.; Ivleva, L.; Voronina, I. Optical and luminescent properties of a series of molybdate single crystals of scheelite crystal structure. Phys. Status Solidi C 2005, 2 (1), 65–68. https://doi.org/10.1002/pssc.200460112
Tang, C.; Wang, H.; Hong, Y.; Xu, W.; Shi, Q.; Liu, Z. Roughness induced wettability amplification of novel copper molybdate-branched CuO nanorod arrays by non-aqueous solution method. Mater. Lett. 2021, 300, 130260. https://doi.org/10.1016/j.matlet.2021.130260
Theiss, F. L.; Ayoko, G. A.; Frost, R. L. Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+ and Al3+ layer cations by co-precipitation methods—A review. Appl. Surf. Sci. 2016, 383, 200–213. https://doi.org/10.1016/j.apsusc.2016.04.150
Wood, D. L.; Tauc, J. Weak Absorption Tails in Amorphous Semiconductors. Phys. Rev. B 1972, 5, 3144. https://doi.org/10.1103/PhysRevB.5.3144
Wulff, G. XXV. Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Krystallflächen. Zeitschrift für Kristallographie - Crystalline Materials 1901,34 (1–6). https://doi.org/10.1524/zkri.1901.34.1.449
Xia, Z.; Chen, D. Synthesis and Luminescence Properties of BaMoO4:Sm3+ Phosphors. J. Am. Ceram. Soc. 2010, 93 (5), 1397–1401. https://doi.org/10.1111/j.1551-2916.2009.03574.x