High photocatalytic activity of Ag/Ag3PO4:W heterostructure formed by femtosecond laser irradiation
Main Article Content
Abstract
In this work, the W-doped Ag3PO4 was prepared by the chemical coprecipitation method and irradiated with a femtosecond laser (FL). The successful formation of the Ag/Ag3PO4:W heterostructure was confirmed by XRD analysis. A higher structural disorder in the [PO4] clusters was observed for the FL irradiated sample (Ag3PO4:W-FL), indicating the formation of Ag metallic from the Ag3PO4 structure. The photocatalytic activity of the samples was studied by photodegradation of rhodamine B under visible light irradiation. The formation of Ag nanoparticles on the surface of Ag3PO4:W led to a degradation rate constant 3.54 times higher than the nonirradiated sample. This higher photocatalytic activity was related to the surface plasmon resonance effect of the Ag metallic, which acts by capturing photoexcited electrons from the Ag3PO4:W, avoiding the recombination of electron-hole pairs, and thus improving the photocatalytic activity.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
Funding data
-
Fundação de Amparo à Pesquisa do Estado de São Paulo
Grant numbers 2013/07296-2 -
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Grant numbers 001 -
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Grant numbers 142035/2017-3 -
Universitat Jaume I
Grant numbers UJI-B2019-30;UJI-B2019-37;UJI-B2019-41 -
Ministerio de Ciencia e Innovación
Grant numbers PID2019-110927RB-I00 -
Generalitat Valenciana
Grant numbers PROMETEO/2020/029 -
Ministerio de Ciencia, Innovación y Universidades
Grant numbers PGC2018094417-B-I00
References
Aljerf, L. High-efficiency extraction of bromocresol purple dye and heavy metals as chromium from industrial effluent by adsorption onto a modified surface of zeolite: Kinetics and equilibrium study. J. Environ. Manage. 2018, 225, 120–132. https://doi.org/10.1016/j.jenvman.2018.07.048
Assis, M.; Cordoncillo, E.; Torres-Mendieta, R.; Beltran-Mir, H.; Minguez-Vega, G.; Oliveira, R.; Leite, E. R.; Foggi, C. C.; Vergani, C. E.; Longo, E.; Andres, J. Towards the scale-up of the formation of nanoparticles on alpha-Ag2WO4 with bactericidal properties by femtosecond laser irradiation. Sci. Rep. 2018, 8 (1), 1884. https://doi.org/10.1038/s41598-018-19270-9
Assis, M.; Robeldo, T.; Foggi, C. C.; Kubo, A. M.; Mínguez-Vega, G.; Condoncillo, E.; Beltran-Mir, H.; Torres-Mendieta, R.; Andres, J.; Oliva, M.; Vergani, C. E.; Barbugli, P. A.; Camargo, E. R.; Borra, R. C.; Longo, E. Ag Nanoparticles/alpha-Ag2WO4 Composite Formed by Electron Beam and Femtosecond Irradiation as Potent Antifungal and Antitumor Agents. Sci. Rep. 2019, 9, 9927. https://doi.org/10.1038/s41598-019-46159-y
Botelho, G.; Sczancoski, J. C.; Andres, J.; Gracia, L.; Longo, E. Experimental and Theoretical Study on the Structure, Optical Properties, and Growth of Metallic Silver Nanostructures in Ag3PO4. J. Phys. Chem. C 2015, 119 (11), 6293–6306. https://doi.org/10.1021/jp512111v
Botelho, G.; Andres, J.; Gracia, L.; Matos, L. S.; Longo, E. Photoluminescence and Photocatalytic Properties of Ag3PO4 Microcrystals: An Experimental and Theoretical Investigation. ChemPlusChem 2016, 81 (2), 202–212. https://doi.org/10.1002/cplu.201500485
Chen, X.; Dai, Y.; Wang, X. Methods and mechanism for improvement of photocatalytic activity and stability of Ag3PO4: A review. J. Alloys Compound 2015, 649, 910–932. https://doi.org/10.1016/j.jallcom.2015.07.174
Dong, W.; Lee, C. W.; Lu, X.; Sun, Y.; Hua, W.; Zhuang, G.; Zhang, S.; Chen, J.; Hou, H.; Zhao, D. Synchronous role of coupled adsorption and photocatalytic oxidation on ordered mesoporous anatase TiO2–SiO2 nanocomposites generating excellent degradation activity of RhB dye. Appl. Catal. B 2010, 95 (3-4), 197–207. https://doi.org/10.1016/j.apcatb.2009.12.025
Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. https://doi.org/10.1038/238037a0
He, G.; Yang, W.; Zheng, W.; Gong, L.; Wang, X.; An, Y.; Tian, M. Facile controlled synthesis of Ag3PO4 with various morphologies for enhanced photocatalytic oxygen evolution from water splitting. RSC Advances 2019, 9 (32), 18222–18231. https://doi.org/10.1039/C9RA01306G
Jette, E. R.; Foote, F. Precision Determination of Lattice Constants. J. Chem. Phys. 1935, 3 (10), 605–616. https://doi.org/10.1063/1.1749562
Karimi-Maleh, H.; Kumar, B. G.; Rajendran, S.; Qin, J.; Vadivel, S.; Durgalakshmi, D.; Gracia, F.; Soto-Moscoso, M.; Orooji, Y.; Karimi, F. Tuning of metal oxides photocatalytic performance using Ag nanoparticles integration. J. Mol. Liq. 2020, 314, 113588. https://doi.org/10.1016/j.molliq.2020.113588
Kochuveedu, S. T.; Jang, Y. H.; Kim, D. H. A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications. Chem. Soc. Rev. 2013, 42 (21), 8467–8493. https://doi.org/10.1039/c3cs60043b
Koyappayil, A.; Berchmans, S.; Lee, M.-H. Dual enzyme-like properties of silver nanoparticles decorated Ag2WO4 nanorods and its application for H2O2 and glucose sensing. Colloids Surf. B Biointerfaces 2020, 189, 110840. https://doi.org/10.1016/j.colsurfb.2020.110840
Lemos, P. S.; Silva, G. S.; Roca, R. A; Assis, M.; Torres-Mendieta, R.; Beltrán-Mir, H.; Mínguez-Vega, G.; Andrés, J.; and Longo, E. Laser and electron beam-induced formation of Ag/Cr structures on Ag2CrO4. Phys. Chem. Chem. Phys. 2019, 21 (11), 6101–6111. https://doi.org/10.1039/c8cp07263a
Li, X.; Xu, P.; Chen, M.; Zeng, G.; Wang, D.; Chen, F.; Tang, W.; Chen, C.; Zhang, C.; Tan, X. Application of silver phosphate-based photocatalysts: Barriers and solutions. Chem. Eng. J. 2019, 366, 339–357. https://doi.org/10.1016/j.cej.2019.02.083
Liu, Y.; Fang, L.; Lu, H.; Liu, L.; Wang, H.; Hu, C. Highly efficient and stable Ag/Ag3PO4 plasmonic photocatalyst in visible light. Catal. Commun. 2012, 17, 200–204. https://doi.org/10.1016/j.catcom.2011.11.001
Liu, B.; Zhao, X.; Terashima, C.; Fujishima, A.; Nakata, K. Thermodynamic and kinetic analysis of heterogeneous photocatalysis for semiconductor systems. Phys. Chem. Chem. Phys. 2014, 16 (19), 8751–8760. https://doi.org/10.1039/c3cp55317e
Liu, Z.; Liu, Y.; Xu, P.; Ma, Z.; Wang, J.; Yuan, H. Rational Design of Wide Spectral-Responsive Heterostructures of Au Nanorod Coupled Ag3PO4 with Enhanced Photocatalytic Performance. ACS Appl. Mater. Interfaces 2017, 9 (24), 20620–20629.
Machado, T. R.; Macedo, N. G.; Assis, M.; Doñate-Buendia, C.; Mínguez-Vega, G.; Teixeira, M. M.; Foggi, C. C.; Vergani, C. E.; Beltran-Mir, H.; Andres, J.; Cordoncillo, E.; Longo, E. From Complex Inorganic Oxides to Ag-Bi Nanoalloy: Synthesis by Femtosecond Laser Irradiation. ACS omega 2018, 3 (8), 9880–9887. https://doi.org/10.1021/acsomega.8b01264
Masse, R.; Torjman, I., Durif, A. Refinement of Crystal-Structure of Silver Monophosphate, Ag3PO4-Existence of High-Temperature Form. Zeitschrift Fur Kristallographie 1976, 144, 76–81. https://doi.org/10.1524/zkri.1976.144.1-6.76
Nubla, K.; Sandhyarani, N. Ag nanoparticles anchored Ag2WO4 nanorods: An efficient methanol tolerant and durable Pt free electro-catalyst toward oxygen reduction reaction. Electrochim. Acta 2020, 340, 135942. https://doi.org/10.1016/j.electacta.2020.135942
Santos, C. C.; Assis, M.; Machado, T. R.; Pereira, P. F. S.; Minguez‐Vega, G.; Cordoncillo, E.; Beltran‐Mir, H.; Doñate‐Buendía, C.; Andrés, J.; Longo, E. Proof‐of‐concept studies directed toward the formation of metallic Ag nanostructures from Ag3PO4 induced by electron beam and femtosecond laser. Part. Part. Syst. Charact. 2019, 36 (6), 1800533. https://doi.org/10.1002/ppsc.201800533
Santos, R. K.; Martins, T. A.; Silva, G. N.; Conceição, M. V. S.; Nogueira, I. C.; Longo, E.; Botelho, G. Ag3PO4/NiO Composites with Enhanced Photocatalytic Activity under Visible Light. ACS omega 2020, 5 (34), 21651–21661. https://doi.org/10.1021/acsomega.0c02456
Shaveisi, Y.; Sharifnia, S. Deriving Ag3PO4CaO composite as a stable and solar light photocatalyst for efficient ammonia degradation from wastewater. J. Energy Chem. 2018, 27 (1), 290–299. https://doi.org/10.1016/j.jechem.2017.06.012
Shi, H.; Yang, S.; Han, C.; Niu, Z.; Li, H.; Huang, X.; Ma, J. Fabrication of Ag/Ag3PO4/WO3 ternary nanoparticles as superior photocatalyst for phenol degradation under visible light irradiation. Solid State Sci. 2019, 96, 105967. https://doi.org/10.1016/j.solidstatesciences.2019.105967
Silva, E. Z.; Faccin, G. M.; Machado, T. R.; Macedo, N. G.; Assis, M.; Maya-Johnson, S.; Sczancoski, J. C.; Andrés, J.; Longo, E.; San-Miguel, M. A. Connecting Theory with Experiment to Understand the Sintering Processes of Ag Nanoparticles. J. Phys. Chem. C 2019, 123 (17), 11310–11318. https://doi.org/10.1021/acs.jpcc.9b02107
Sofi, F. A.; Majid, K. Plasmon induced interfacial charge transfer across Zr-based metal-organic framework coupled Ag2WO4 heterojunction functionalized by Ag NPs: Efficient visible light photocatalyst. Chem. Phys. Lett. 2019, 720, 7–14. https://doi.org/10.1016/j.cplett.2019.02.005
Sousa, J. C. G.; Ribeiro, A. R.; Barbosa, M. O.; Pereira, M. F. R.; Silva, A. M. T. A review on environmental monitoring of water organic pollutants identified by EU guidelines. J. Hazard. Mater. 2018, 344, 146–162. https://doi.org/10.1016/j.jhazmat.2017.09.058
Tan, D.; Zhou, S.; Qiu, J.; Khusro, N. Preparation of functional nanomaterials with femtosecond laser ablation in solution. J. Photochem. Photobiol. C Photochem. Rev. 2013, 17, 50–68. https://doi.org/10.1016/j.jphotochemrev.2013.08.002
Trench, A. B.; Machado, T. R.; Gouveia, A. F.; Assis, M.; Trindade, L. G.; Santos, C.; Perrin, A.; Perrin, C.; Oliva, M.; Andrés, J.; Longo, E. Connecting structural, optical, and electronic properties and photocatalytic activity of Ag3PO4:Mo complemented by DFT calculations. Appl. Catal. B 2018, 238, 198–211. https://doi.org/10.1016/j.apcatb.2018.07.019
Trench, A. B.; Machado, T. R.; Gouveia, A. F.; Foggi, C. C.; Teodoro, V.; Sánchez-Montes, I.; Teixeira, M. M.; Trindade, L. G.; Jacomaci, N.; Perrin, A.; Perrin, C.; Aquino, J. M.; Andrés, J.; Longo, E. Rational Design of W-Doped Ag3PO4 as an Efficient Antibacterial Agent and Photocatalyst for Organic Pollutant Degradation. ACS omega 2020, 5 (37), 23808–23821. https://doi.org/10.1021/acsomega.0c03019
Vorobyev, A. Y.; Guo, C. Direct femtosecond laser surface nano/microstructuring and its applications. Laser Photonics Rev. 2013, 7 (3), 385–407. https://doi.org/10.1002/lpor.201200017
Wood, D. L.; Tauc, J. Weak Absorption Tails in Amorphous Semiconductors. Phys. Rev. B 1972, 5 (8), 3144–3151. https://doi.org/10.1103/PhysRevB.5.3144
Yan, T.; Zhang, H.; Liu, Y.; Guan, W.; Long, J.; Li, W.; You, J. Fabrication of robust M/Ag3PO4(M = Pt, Pd, Au) Schottky-type heterostructures for improved visible-light photocatalysis. RSC Adv. 2014, 4 (70), 37220. https://doi.org/10.1039/C4RA06254J
Zangeneh, H.; Zinatizadeh, A. A. L.; Habibi, M.; Akia, M.; Isa, M. H. Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review. J. Ind. Eng. Chem. 2015, 26, 1–36. https://doi.org/10.1016/j.jiec.2014.10.043
Zwara, J.; Grabowska, E.; Klimczuk, T.; Lisowski, W.; Zaleska-Medynska, A. Shape-dependent enhanced photocatalytic effect under visible light of Ag3PO4 particles. J. Photochem. Photobiol. A Chem. 2018, 367, 240–252. https://doi.org/10.1016/j.jphotochem.2018.08.006