Activated carbon from pumpkin seeds: Production by simultaneous carbonization activation for occupational respiratory protection

Main Article Content

Walquíria Joseane Silva
Nivaldo Freire Andrade Neto
Carlos Alberto Paskocimas
Juan Alberto Chaves Ruiz
Fabíola Correa Carvalho
Elson Longo
Fabiana Villela da Motta
Maurício Roberto Bomio Delmonte

Abstract

Activated carbon materials are derived from carbonaceous sources and used as a technological element for various industrial purposes. These materials are present in most filters (cartridges) in personal respiratory protective equipment. Due to this context and to enhance sustainability concepts and human health in the production of materials, this study aimed to produce activated carbon from an abundant agricultural waste in the northeast Brazil through a route that not only favors its simultaneous carbonization and activation but also its thermal neutralization. The precursor biomass was characterized by particle size analysis, a standard testing method for moisture and ash content which were characterized by FRX, CHN, and thermal analysis. The produced activated carbon was characterized by potential of hydrogen (pH), XRD, BET, SEM, TPD by ammonia and UV-Vis analysis. The activated carbons showed yields between 73 and 78%. The morphology varied in function of the biomass interaction with the type and concentration of acid used. The produced samples showed adsorption capacity and selectivity to ammonia gas.

Metrics

Metrics Loading ...

Article Details

How to Cite
Silva, W. J., Andrade Neto, N. F., Paskocimas, C. A., Ruiz, J. A. C., Carvalho, F. C., Longo, E., da Motta, F. V., & Delmonte, M. R. B. (2022). Activated carbon from pumpkin seeds: Production by simultaneous carbonization activation for occupational respiratory protection. Eclética Química, 47(1SI), 63–76. https://doi.org/10.26850/1678-4618eqj.v47.1SI.2022.p63-76
Section
Original articles

References

Alam, M. Z.; Muyibi, S. A.; Mansor, M. F.; Wahid, R. Activated carbons derived from oil palm empty-fruit bunches: Application to environmental problems. J. Environ. Sci. 2007, 19 (1), 103–108. https://doi.org/10.1016/S1001-0742(07)60017-5

AlOthman, Z. A.; Habila, M. A.; Ali, R.; Ghafar, A. A.; El-din Hassouna, M. S. Valorization of two waste streams into activated carbon and studying its adsorption kinetics, equilibrium isotherms and thermodynamics for methylene blue removal. Arab. J. Chem. 2014, 7 (6), 1148–1158. https://doi.org/10.1016/j.arabjc.2013.05.007

Bansal, R.; Warrington, A. E.; Gard, A. L.; Ranscht, B.; Pfeiffer, S. E. Multiple and novel specificities of monoclonal antibodies O1, O4, and R‐mAb used in the analysis of oligodendrocyte development. J. Neurosci. Res. 1989, 24 (4), 548–557. https://doi.org/10.1002/jnr.490240413

Beuselinck, L.; Govers, G.; Poesen, J.; Degraer, G.; Froyen, L. Grain-size analysis by laser diffractometry: Comparison with the sieve-pipette method. CATENA 1998, 32 (3-4), 193–208. https://doi.org/10.1016/S0341-8162(98)00051-4

Caputi, C. A.; De Carolis, G.; Tomasetti, C. Regional intravenous ketanserin and guanethidine therapy in Raynaud's phenomenon. Angiology 1991, 42 (6), 473–480. https://doi.org/10.1177/000331979104200607

Carvalho, L. M. J.; Gomes, P. B.; Godoy, R. L. O.; Pacheco, S.; Monte, P. H. F.; Carvalho, J. L. V.; Nutti, M. R.; Neves, A. C. L.; Vieira, A. C. R. A.; Ramos, S. R. R. Total carotenoid content, α-carotene and β-carotene, of landrace pumpkins (Cucurbita moschata Duch): A preliminary study. Food Res. Int. 2012, 47 (2), 337–340. https://doi.org/10.1016/j.foodres.2011.07.040

Connor, T. H.; MacKenzie, B. A.; DeBord, D. G.; Trout, D. B.; O’Callaghan, J. P. NIOSH List of Antineoplastic and Other Hazardous Drugs in Healthcare Settings, 2016; DHHS (NIOSH) Publication No. 2016-161; Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health: Washington, DC, 2016. https://www.cdc.gov/niosh/docs/2016-161/pdfs/2016-161.pdf (accessed 2022-03-16).

Dalai, C.; Jha, R.; Desai, V. R. Rice Husk and Sugarcane Baggase Based Activated Carbon for Iron and Manganese Removal. Aquat. Procedia 2015, 4, 1126–1133. https://doi.org/10.1016/j.aqpro.2015.02.143

Dodevski, V.; Janković, B.; Stojmenović, M.; Krstić, S.; Popović, J.; Pagnacco, M. C.; Popović, M.; Pašalić, S. Plane tree seed biomass used for preparation of activated carbons (AC) derived from pyrolysis. Modeling the activation process. Colloids Surf. A Physicochem. Eng. Asp. 2017, 522, 83–96. https://doi.org/10.1016/j.colsurfa.2017.03.003

Ferreira, T. A.; Oliveira, C. R.; Chaves, P. P. N.; Milhomens, K. K. B.; Barros, H. B.; Nascimento, I. R. Indução da frutificação paternocárpica de frutos em híbrido de abóbora japonesa com 2, 4-D sob condições de temperatura elevada. Nucleus 2017, 14 (1), 145–152. https://doi.org/10.3738/1982.2278.1686

Gonçalves, A. L.; Rodrigues, C. M.; Pires, J. C. M.; Simões, M. The effect of increasing CO2 concentrations on its capture, biomass production and wastewater bioremediation by microalgae and cyanobacteria. Algal Res. 2016, 14, 127–136. https://doi.org/10.1016/j.algal.2016.01.008

Gonzaga, L. C.; Carvalho, J. L. N.; Oliveira, B. G.; Soares, J. R.; Cantarella, H. Crop residue removal and nitrification inhibitor application as strategies to mitigate N2O emissions in sugarcane fields. Biomass Bioenergy 2018, 119, 206–216. https://doi.org/10.1016/j.biombioe.2018.09.015

Goyal, M.; Rattan, V. K.; Aggarwal, D.; Bansal, R. C. Removal of copper from aqueous solutions by adsorption on activated carbons. Colloids Surf. A Physicochem. Eng. Asp 2001, 190 (3), 229–238. http://doi.org/10.1016/S0927-7757(01)00656-2

Hameed, B. H.; El-Khaiary, M. I. Batch removal of malachite green from aqueous solutions by adsorption on oil palm trunk fibre: Equilibrium isotherms and kinetic studies. J. Hazard. Mater. 2008, 154 (1), 237–244. https://doi.org/10.1016/j.jhazmat.2007.10.017

Huang, H.-j.; Yang, T.; Lai, F.-y.; Wu, G.-q. Co-pyrolysis of sewage sludge and sawdust/rice straw for the production of biochar. J. Anal. Appl. Pyrolysis 2017, 125, 61–68. https://doi.org/10.1016/j.jaap.2017.04.018

Joshi, D. C.; Das, S. K.; Mukherjee, R. K. Physical properties of pumpkin seeds. J. Agric. Eng. Res. 1993, 54 (3), 219–229. https://doi.org/10.1006/jaer.1993.1016

MacIntyre, C. R.; Chughtai, A. A.; Seale, H.; Richards, G. A.; Davidson, P. M. Respiratory protection for healthcare workers treating Ebola virus disease (EVD): Are facemasks sufficient to meet occupational health and safety obligations? Int. J. Nurs. Stud. 2014, 51 (11), 1421–1426. https://doi.org/10.1016/j.ijnurstu.2014.09.002

Mahamad, M. N.; Zaini, M. A. A.; Zakaria, Z. A. Preparation and characterization of activated carbon from pineapple waste biomass for dye removal. Int. Biodeterior. Biodegradation 2015, 102, 274–280. https://doi.org/10.1016/j.ibiod.2015.03.009

Marshall, W. E.; Ahmedna, M.; Rao, R. M.; Johns, M. Granular activated carbons from sugarcane bagasse: Production and uses. Int. Sugar J. 2000, 102 (1215), 147–151.

Martins, U. R.; Santos-Silva, A.; Galileo, M. H. M.; Limeira-de-Oliveira, F. Cerambycidae (Coleoptera) dos estados do Piauí e Ceará, Brasil: espécies conhecidas, nova tribo, nova espécie e novos registros. Iheringia Sér. Zool. 2014, 104 (3), 373–384. https://doi.org/10.1590/1678-476620141043373384

Matos, J.; Montaña, R.; Rivero, E., Influence of activated carbon upon the photocatalytic degradation of methylene blue under UV–vis irradiation. Environ. Sci. Pollut. Res. 2015, 22 (2), 784–791. https://doi.org/10.1007/s11356-014-2832-9

Njoku, K. L.; Akinola, M. O.; Nkemdilim, C. M.; Ibrahim, P. M.; Olatunbosun, A. S. Evaluation of the potentials of three grass plants to remediate crude oil polluted soil. CAES 2014, 2 (4), 131–137.

Nunes, P. H. M. P.; Aquino, L. A.; Santos, L. P. D.; Xavier, F. O.; Dezordi, L. R.; Assunção, N. S. Produtividade do trigo submetido a aplicação de nitrogênio e a inoculação com Azospirillum brasiliense. Ver. Bras. Ci. Solo 2015, 39, 174–182. https://doi.org/10.1590/01000683rbcs20150354

Pezoti Junior, O.; Cazetta, A. L.; Souza, I. P. A. F.; Bedin, K. C.; Martins, A. C.; Silva, T. L.; Almeida, V. C. Adsorption studies of methylene blue onto ZnCl2-activated carbon produced from buriti shells (Mauritia flexuosa L.). J. Ind. Eng. Chem. 2014, 20 (6), 4401–4407. https://doi.org/10.1016/j.jiec.2014.02.007

Pezoti, O.; Cazetta, A. L.; Bedin, K. C.; Souza, L. S.; Martins, A. C.; Silva, T. L.; Santos Júnior, O. O.; Visentainer, J. V.; Almeida, V. C. NaOH-activated carbon of high surface area produced from guava seeds as a high-efficiency adsorbent for amoxicillin removal: Kinetic, isotherm and thermodynamic studies. Chem. Eng. J. 2016, 288, 778–788. https://doi.org/10.1016/j.cej.2015.12.042

Poinern, G. E.; Brundavanam, R.; Le, X. T.; Djordjevic, S.; Prokic, M.; Fawcett, D. Thermal and ultrasonic influence in the formation of nanometer scale hydroxyapatite bio-ceramic. Int. J. Nanomed. 2011, 6, 2083–2095. https://doi.org/10.2147/IJN.S24790

Rovani, S.; Rodrigues, A. G.; Medeiros, L. F.; Cataluña, R.; Lima, É. C.; Fernandes, A. N. Synthesis and characterisation of activated carbon from agroindustrial waste—Preliminary study of 17β-estradiol removal from aqueous solution. J. Environ. Chem. Eng. 2016, 4 (2), 2128–2137. https://doi.org/10.1016/j.jece.2016.03.030

Shen, L.; Li, Y.; Jiang, L.; Wang, X. Response of Saccharomyces cerevisiae to the Stimulation of Lipopolysaccharide. PLoS ONE 2014, 9 (8), e104428. https://doi.org/10.1371/journal.pone.0104428

Solís-Domínguez, F. A.; Valentín-Vargas, A.; Chorover, J.; Maier, R. M. Effect of arbuscular mycorrhizal fungi on plant biomass and the rhizosphere microbial community structure of mesquite grown in acidic lead/zinc mine tailings. Sci. Total Environ. 2011, 409 (6), 1009–1016. https://doi.org/10.1016/j.scitotenv.2010.11.020

Tsyntsarski, B.; Stoycheva, I.; Tsoncheva, T.; Genova, I.; Dimitrov, M.; Petrova, B.; Paneva, D.; Cherkezova-Zheleva, Z.; Budinova, T.; Kolev, H.; Gomis-Berenguer, A.; Ania, C. O.; Mitov, I.; Petrov, N. Activated carbons from waste biomass and low rank coals as catalyst supports for hydrogen production by methanol decomposition. Fuel Process. Technol. 2015, 137, 139–147. https://doi.org/10.1016/j.fuproc.2015.04.016

Van Thuan, T.; Quynh, B. T. P.; Nguyen, T. D.; Ho, V. T. T.; Bach, L. G. Response surface methodology approach for optimization of Cu2+, Ni2+ and Pb2+ adsorption using KOH-activated carbon from banana peel. Surf. Interfaces 2017, 6, 209–217. https://doi.org/10.1016/j.surfin.2016.10.007

Wang, S.; Li, L.; Wu, H.; Zhu, Z. H. Unburned carbon as a low-cost adsorbent for treatment of methylene blue-containing wastewater. J. Colloid Interface Sci. 2005, 292 (2), 336–343. https://doi.org/10.1016/j.jcis.2005.06.014

Wang, S.; Gao, B.; Li, Y.; Mosa, A.; Zimmerman, A. R.; Ma, L. Q.; Harris, W. G.; Migliaccio, K. W. Manganese oxide-modified biochars: preparation, characterization, and sorption of arsenate and lead. Bioresour. Technol. 2015, 181, 13–17. https://doi.org/10.1016/j.biortech.2015.01.044

Wu, L.; Zhang, X.; Liu, D.; Peng, H.; Long, T. Activated Carbons Derived from Livestock Sewage Sludge and their Absorption Ability for the Livestock Sewage. IERI Procedia 2014, 9, 33–42. https://doi.org/10.1016/j.ieri.2014.09.037

Yorgun, S.; Yıldız, D. Preparation and characterization of activated carbons from Paulownia wood by chemical activation with H3PO4. J. Taiwan Inst. Chem. Eng. 2015, 53, 122–131. https://doi.org/10.1016/j.jtice.2015.02.032

Zhang, S. B.; Lu, Q. Y. Characterizing the structural and surface properties of proteins isolated before and after enzymatic demulsification of the aqueous extract emulsion of peanut seeds. Food Hydrocoll. 2015, 47, 51–60. https://doi.org/10.1016/j.foodhyd.2015.01.007