Catalytic potential of titanium oxide and gold dopped titanium oxide nanoparticles in the selectivity benzyl alcohol oxidation

Main Article Content

Arthur Martins Gabriel
Karla da Silva Malaquias
Fernando Henrique Cristovan
Tatiane Moraes Arantes

Abstract

Titanium oxide (TiO2) nanoparticles have been widely used and researched in recent years due to their wide application in several areas such as solar cells, catalysis and their chemical, non-toxic and electrical properties. Thus, this work aimed to study the catalytic potential of these nanomaterials through the oxidation of benzyl alcohol, for which TiO2 nanoparticles synthesized by the hydrothermal method and decorated with gold nanoparticles obtained by the Turkevich method (TiO2/Au) were used. The catalyst proved to be active for the catalysis of benzyl alcohol oxidation, with a yield of about 73% for the TiO2/Au catalyst and 1.4% for the TiO2 catalyst. Additionally, it was observed that the catalyst was selective, since the GC-MS and FTIR spectra showed only benzaldehyde as the final reaction product. The selective oxidation of alcohols is one of the most significant transformations in organic chemistry, as it is essential for the production of industrial intermediates.

Metrics

Metrics Loading ...

Article Details

How to Cite
Gabriel, A. M., Malaquias, K. da S., Cristovan, F. H., & Arantes, T. M. (2022). Catalytic potential of titanium oxide and gold dopped titanium oxide nanoparticles in the selectivity benzyl alcohol oxidation. Eclética Química, 47(1SI), 28–38. https://doi.org/10.26850/1678-4618eqj.v47.1SI.2022.p28-38
Section
Original articles

References

Abisharani, J. M.; Devikala, S.; Kumar, R. D.; Arthanareeswari, M.; Kamaraj, P. Green synthesis of TiO2 nanoparticles using Cucurbita pepo seeds extract. Mater. Today Proc. 2019, 14, 302–307. https://doi.org/10.1016/j.matpr.2019.04.151

Ali, N.; Ali, F.; Khurshid, R.; Ikramullah; Ali, Z.; Afzal, A.; Bilal, M.; Iqbal, H. M. N.; Ahmad, I. TiO2 nanoparticles and epoxy-TiO2 nanocomposites: A review of synthesis, modification strategies, and photocatalytic potentialities. J. Inorg. Organomet. Polym. Mater. 2020, 30, 4829–4846. https://doi.org/10.1007/s10904-020-01668-6

Ananthakumar, S.; Ramkumar, J.; Babu, S. M. Semiconductor nanoparticles sensitized TiO2 nanotubes for high efficiency solar cell devices. Renew. Sustain. Energy Rev. 2016, 57, 1307–1321. https://doi.org/10.1016/j.rser.2015.12.129

Arantes, T. M. Incorporação por via coloidal de nanopartículas sintéticas em polímeros comerciais. Master thesis, Universidade Federal de São Carlos, São Carlos, SP, 2009.

Bavanilatha, M.; Yoshitha, L.; Nivedhitha, S.; Sahithya, S. Bioactive studies of TiO2 nanoparticles synthesized using Glycyrrhiza glabra. Biocatal. Agric. Biotechnol. 2019, 19, 101131. https://doi.org/10.1016/j.bcab.2019.101131

Beck, A.; Horváth, A.; Stefler, G.; Katona, R.; Geszti, O.; Tolnai, G.; Liotta, L. F.; Guczi, L. Formation and structure of Au/TiO2 and Au/CeO2 nanostructures in mesoporous SBA-15. Catal. Today 2008, 139 (3), 180–187. https://doi.org/10.1016/j.cattod.2008.05.039

Borah, R.; Ninakanti, R.; Nuyts, G.; Peeters, H.; Pedrazo-Tardajos, A.; Nuti, S.; Velde, C. V.; De Wael, K.; Lenaerts, S.; Bals, S.; Verbruggen, S. W. Selectivity in the Ligand Functionalization of Photocatalytic Metal Oxide Nanoparticles for Phase Transfer and Self-Assembly Applications. Chem. Eur. J. 2021, 27 (35), 9011–9021. https://doi.org/10.1002/chem.202100029

Cao, Z.; Yang, L.; Chen, H.; Xu, C.; Qi, D.; Zhu, S.; Ziener, U. Preparation of Au/TiO2 nanocomposite particles with high visible-light photocatalytic activity in inverse miniemulsions. Colloid Polym. Sci. 2015, 293, 277–288. https://doi.org/10.1007/s00396-014-3412-8

Chen, X.; Mao, S. S. Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. Chem. Rev. 2007, 107 (7), 2891–2959. https://doi.org/10.1021/cr0500535

Choi, D.; Kim, J. H.; Kwon, D. C.; Shin, C. H.; Ryu, H.; Yoon, E.; Lee, H.-C. Crystalline silicon nanoparticle formation by tailored plasma irradiation: Self-structurization, nucleation and growth acceleration, and size control. Nanoscale 2021, 13 (23), 10356–10364. https://doi.org/10.1039/D1NR00628B

Conte, M.; Miyamura, H.; Kobayashi, S.; Chechik, V. Enhanced acyl radical formation in the Au nanoparticle-catalysed aldehydeoxidation. Chem. Commun. 2010, 46 (1), 145–147. https://doi.org/10.1039/B918200D

Dalod, A. R. M.; Henriksen, L.; Grande, T.; Einarsrud, M.-A. Functionalized TiO2 nanoparticles by single-step hydrothermal synthesis: The role of the silane coupling agents. Beilstein J. Nanotechnol. 2017, 8 (1), 304–312. https://doi.org/10.3762/bjnano.8.33

Diez-Castellnou, M.; Suo, R.; Marro, N.; Matthew, S. A. L.; Kay, E. R. Rapidly adaptive all-covalent nanoparticle surface engineering. Chem. Eur. J. 2021, 27 (38), 9948–9953. https://doi.org/10.1002/chem.202101042

Du, M.; Zeng, G.; Ye, C.; Jin, H.; Huang, J.; Sun, D.; Li, Q.; Chen, B.; Li, X. Solvent-free photo-thermocatalytic oxidation of benzyl alcohol on Pd/TiO2 (B) nanowires. Mol. Catal. 2020, 483, 110771. https://doi.org/10.1016/j.mcat.2020.110771

Fristrup, P.; Johansen, L. B.; Christensen, C. H. Mechanistic investigation of the gold-catalyzed aerobic oxidation of aldehydes: added insight from Hammett studies and isotopic labelling experiments. Chem. Commun. 2008, 7345 (24), 2750–2752. https://doi.org/10.1039/b803270j

Gorup, L. F.; Longo, E.; Leite, E. R.; Camargo, E. R. Moderating effect of ammonia on particle growth and stability of quasi-monodisperse silver nanoparticles synthesized by the Turkevich method. J. Colloid Interface Sci. 2011, 360 (2), 355–358. https://doi.org/10.1016/j.jcis.2011.04.099

Gupta, S. M.; Tripathi, M. A review of TiO2 nanoparticles. Chin. Sci. Bull. 2011, 56, 1639. https://doi.org/10.1007/s11434-011-4476-1

Gupta, Y.; Ghrera, A. S. Recent advances in gold nanoparticle-based lateral flow immunoassay for the detection of bacterial infection. Arch. Microbiol. 2021, 203, 3767–3784. https://doi.org/10.1007/s00203-021-02357-9

Haider, A. J.; Al-Anbari, R. H.; Kadhim, G. R.; Salame, C. T. Exploring potential environmental applications of TiO2 nanoparticles. Energy Procedia 2017, 119, 332–345. https://doi.org/10.1016/j.egypro.2017.07.117

Kafshgari, M. H.; Goldmann, W. H. Insights into theranostic properties of titanium dioxide for nanomedicine. Nano-Micro Lett. 2020, 12, 22. https://doi.org/10.1007/s40820-019-0362-1

Kaneta, K.; Tahara, S.; Idota, N.; Sugahara, Y. Preparation of inorganic-organic hybrid gels by radical exchange reaction using TiO2 nanoparticles modified with organophosphonic acid bearing C-ON bonds. Mater. Today Proc. 2019, 16 (Part. 1), 180–186. https://doi.org/10.1016/j.matpr.2019.05.291

Li, J.; Wu, X.; Liu, S. W. Fluorinated TiO2 Hollow Photocatalysts for Photocatalytic Applications. Wuli Huaxue Xuebao/ Acta Phys. - Chim. Sin. 2021, 37 (6), 2009038. https://doi.org/10.3866/PKU.WHXB202009038.

Lin, X.; Chen, H.; Hu, Z.; Hou, Y.; Dai, W. Enhanced visible light photocatalysis of TiO2 by Co-modification with Eu and Au nanoparticles. Solid State Sci. 2018, 83, 181–187. https://doi.org/10.1016/j.solidstatesciences.2018.07.007

Liu, J.; Zou, S.; Lu, L.; Zhao, H.; Xiao, L.; Fan, J. Room temperature selective oxidation of benzyl alcohol under base-free aqueous conditions on Pt/TiO2. Catal. Commun. 2017, 99, 6–9. https://doi.org/10.1016/j.catcom.2017.05.015

McNamara, K.; Tofail, S. A. M. Nanoparticles in biomedical applications. Adv. Phys. X 2017, 2 (1), 54–88. https://doi.org/10.1080/23746149.2016.1254570

Messaddeq, S. H.; Bonnet, A.-S.; Santagnelli, S. H.; Salek, G.; Colmenares, Y. N.; Messaddeq, Y. Photopolymerized hybrids containing TiO2 nanoparticles for gradient-index lens. Mater. Chem. Phys. 2019, 236, 121793. https://doi.org/10.1016/j.matchemphys.2019.121793

Mitra, A.; Trifkovic, M.; Ponnurangam, S. Surface functionalization-induced effects on nanoparticle dispersion and associated changes in the thermophysical properties of polymer nanocomposites. Macromolecules 2021, 54 (9), 3962–3971. https://doi.org/10.1021/acs.macromol.1c00184

Montalvo-Quiros, S.; Luque-Garcia, J. L. Combination of bioanalytical approaches and quantitative proteomics for the elucidation of the toxicity mechanisms associated to TiO2 nanoparticles exposure in human keratinocytes. Food Chem. Toxicol. 2019, 127, 197–205. https://doi.org/10.1016/j.fct.2019.03.036

Mourdikoudis, S.; Kostopoulou, A.; LaGrow, A. P. Magnetic nanoparticle composites: Synergistic effects and applications. Adv. Sci. 2021, 8 (12), 2004951. https://doi.org/10.1002/advs.202004951

Nowicka, E.; Althahban, S.; Leah, T. D.; Shaw, G.; Morgan, D.; Kiely, C. J.; Roldan, A.; Hutchings, G. J. Benzyl alcohol oxidation with Pd-Zn/TiO2: Computational and experimental studies. Sci. Technol. Adv. Mater. 2019, 20 (1), 367–378. https://doi.org/10.1080/14686996.2019.1598237

Ozdal, Z. D.; Sahmetlioglu, E.; Narin, I.; Cumaoglu, A. Synthesis of gold and silver nanoparticles using flavonoid quercetin and their effects on lipopolysaccharide induced inflammatory response in microglial cells. 3 Biotech 2019, 9 (6), 212. https://doi.org/10.1007/s13205-019-1739-z

Radetić, M. Functionalization of textile materials with TiO2 nanoparticles. J. Photochem. Photobiol. C: Photochem. Rev. 2013, 16, 62–76. https://doi.org/10.1016/j.jphotochemrev.2013.04.002

Reddy, P. N. K.; Shaik, D. P. M. D.; Ganesh, V.; Nagamalleswari, D.; Thyagarajan, K.; Prasanth, P. V. Structural, optical and electrochemical properties of TiO2 nanoparticles synthesized using medicinal plant leaf extract. Ceram. Int. 2019, 45 (13), 16251–16260. https://doi.org/10.1016/j.ceramint.2019.05.147

Sankar, M.; Nowicka, E.; Carter, E.; Murphy, D. M.; Knight, D. W.; Bethell, D.; Hutchings, G. J. The benzaldehyde oxidation paradox explained by the interception of peroxy radical by benzyl alcohol. Nat. Commun. 2014, 5, 3332. https://doi.org/10.1038/ncomms4332

Srinivasan, M.; Venkatesan, M.; Arumugam, V.; Natesan, G. Green synthesis and characterization of titanium dioxide nanoparticles (TiO2 NOPs) using Sesbania grandiflora and evaluation of toxicity in zebra fish embryos. Process Biochem. 2019, 80, 197–202. https://doi.org/10.1016/j.procbio.2019.02.010

Sun, J.; Han, Y.; Fu, H.; Qu, X.; Xu, Z.; Zheng, S. Au@Pd/TiO2 with atomically dispersed pd as highly active catalyst for solvent-free aerobic oxidation of benzyl alcohol. Chem. Eng. J. 2017, 313, 1–9. https://doi.org/10.1016/j.cej.2016.12.024

Tayel, A.; Ramadan, A. R.; El Seoud, O. A. Titanium dioxide/graphene and titanium dioxide/graphene oxide nanocomposites: synthesis, characterization and photocatalytic applications for water decontamination. Catalysts 2018, 8 (11), 491. https://doi.org/10.3390/catal8110491

Tomovska, R.; Daniloska, V.; Asua, J. M. UV/Vis photocatalytic functionalization of TiO2 nanoparticle surfaces toward water repellent properties. J. Mater. Chem. 2011, 21 (43), 17492–17497. https://doi.org/10.1039/c1jm13412d

Verma, P.; Mori, K.; Kuwahara, Y.; Cho, S. J.; Yamashita, H. Synthesis of plasmonic gold nanoparticles supported on morphology-controlled TiO2 for aerobic alcohol oxidation. Catal. Today 2020, 35, 255–261. https://doi.org/10.1016/j.cattod.2019.10.014

Wang, Z.; Feng, J.; Li, X.; Oh, R.; Shi, D.; Akdim, O.; Xia, M.; Zhao, L.; Huang, X.; Zhang, G. Au-Pd nanoparticles immobilized on TiO2 nanosheet as an active and durable catalyst for solvent-free selective oxidation of benzyl alcohol. J. Colloid Interface Sci. 2021, 588, 787–794. https://doi.org/10.1016/j.jcis.2020.11.112

Weerachawanasak, P.; Hutchings, G. J.; Edwards, J. K.; Kondrat, S. A.; Miedziak, P. J.; Prasertham, P.; Panpranot, J. Surface functionalized TiO2 supported Pd catalysts for solvent-free selective oxidation of benzyl alcohol. Catal. Today 2015, 250, 218–225. https://doi.org/10.1016/j.cattod.2014.06.005

Wu, Y.; Chen, L.; Chen, F.; Zou, H.; Wang, Z. A key moment for TiO2: Prenatal exposure to TiO2 nanoparticles may inhibit the development of offspring. Ecotoxicol. Environ. Saf. 2020, 202. https://doi.org/10.1016/j.ecoenv.2020.110911

Yan, J.; Feng, S.; Lu, H.; Wang, J.; Zheng, J.; Zhao, J.; Li, L.; Zhu, Z. Alcohol induced liquid-phase synthesis of rutile titania nanotubes. Mater. Sci. Eng. B 2010, 172 (2), 114–120. https://doi.org/10.1016/j.mseb.2010.04.032

Yang, F.; Liu, X.; Yang, Z. Chiral metal nanoparticle superlattices enabled by porphyrin-based supramolecular structures. Angew. Chemie Int. Ed. 2021, 60 (26), 14671–14678. https://doi.org/10.1002/anie.202103809

Zare, M.; Sarkati, M. N. Chitosan-functionalized Fe3O4 nanoparticles as an excellent biocompatible nanocarrier for silymarin delivery. Polym. Adv. Technol. 2021, 32 (10). 4094–4100. https://doi.org/10.1002/pat.5416

Zhang, J.; Wang, D.; Zhang, H. One-step hydrothermal synthesis of small TiO2 porous nanoparticles for efficient degradation of organic dyes. J. Nanosci. Nanotechnol. 2017, 18 (5), 3185–3191. https://doi.org/10.1166/jnn.2018.14663

Zhang, X.-F.; Wang, Z.; Zhong, Y.; Qiu, J.; Zhang, X.; Gao, Y.; Gu, X.; Yao, J. TiO2 nanorods loaded with Au–Pt alloy nanoparticles for the photocatalytic oxidation of benzyl alcohol. J. Phys. Chem. Solids 2019, 126, 27–32. https://doi.org/10.1016/j.jpcs.2018.10.026

Zhao, C.; Zhao, Q.; Zhao, Q.; Qiu, J.; Zhu, C. Deposition of Au/TiO2 film by pulsed laser. Appl. Surf. Sci. 2006, 252 (20), 7415–7421. https://doi.org/10.1016/j.apsusc.2005.08.086

Zhao, W.; Li, Y.; Shen, W. Tuning the shape and crystal phase of TiO2 nanoparticles for catalysis. Chem. Commun. 2021, 57 (56), 6838–6850. https://doi.org/10.1039/D1CC01523K

Zheng, G.; Peng, H.; Jiang, J.; Kang, G.; Liu, J.; Zheng, J.; Liu, Y. Surface functionalization of PEO nanofibers using a TiO2 suspension as sheath fluid in a modified coaxial electrospinning process. Chem. Res. Chin. Univ. 2021, 37 (3), 571–577. https://doi.org/10.1007/s40242-021-1118-2