Catalytic potential of titanium oxide and gold dopped titanium oxide nanoparticles in the selectivity benzyl alcohol oxidation
Main Article Content
Abstract
Titanium oxide (TiO2) nanoparticles have been widely used and researched in recent years due to their wide application in several areas such as solar cells, catalysis and their chemical, non-toxic and electrical properties. Thus, this work aimed to study the catalytic potential of these nanomaterials through the oxidation of benzyl alcohol, for which TiO2 nanoparticles synthesized by the hydrothermal method and decorated with gold nanoparticles obtained by the Turkevich method (TiO2/Au) were used. The catalyst proved to be active for the catalysis of benzyl alcohol oxidation, with a yield of about 73% for the TiO2/Au catalyst and 1.4% for the TiO2 catalyst. Additionally, it was observed that the catalyst was selective, since the GC-MS and FTIR spectra showed only benzaldehyde as the final reaction product. The selective oxidation of alcohols is one of the most significant transformations in organic chemistry, as it is essential for the production of industrial intermediates.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
References
Abisharani, J. M.; Devikala, S.; Kumar, R. D.; Arthanareeswari, M.; Kamaraj, P. Green synthesis of TiO2 nanoparticles using Cucurbita pepo seeds extract. Mater. Today Proc. 2019, 14, 302–307. https://doi.org/10.1016/j.matpr.2019.04.151
Ali, N.; Ali, F.; Khurshid, R.; Ikramullah; Ali, Z.; Afzal, A.; Bilal, M.; Iqbal, H. M. N.; Ahmad, I. TiO2 nanoparticles and epoxy-TiO2 nanocomposites: A review of synthesis, modification strategies, and photocatalytic potentialities. J. Inorg. Organomet. Polym. Mater. 2020, 30, 4829–4846. https://doi.org/10.1007/s10904-020-01668-6
Ananthakumar, S.; Ramkumar, J.; Babu, S. M. Semiconductor nanoparticles sensitized TiO2 nanotubes for high efficiency solar cell devices. Renew. Sustain. Energy Rev. 2016, 57, 1307–1321. https://doi.org/10.1016/j.rser.2015.12.129
Arantes, T. M. Incorporação por via coloidal de nanopartículas sintéticas em polímeros comerciais. Master thesis, Universidade Federal de São Carlos, São Carlos, SP, 2009.
Bavanilatha, M.; Yoshitha, L.; Nivedhitha, S.; Sahithya, S. Bioactive studies of TiO2 nanoparticles synthesized using Glycyrrhiza glabra. Biocatal. Agric. Biotechnol. 2019, 19, 101131. https://doi.org/10.1016/j.bcab.2019.101131
Beck, A.; Horváth, A.; Stefler, G.; Katona, R.; Geszti, O.; Tolnai, G.; Liotta, L. F.; Guczi, L. Formation and structure of Au/TiO2 and Au/CeO2 nanostructures in mesoporous SBA-15. Catal. Today 2008, 139 (3), 180–187. https://doi.org/10.1016/j.cattod.2008.05.039
Borah, R.; Ninakanti, R.; Nuyts, G.; Peeters, H.; Pedrazo-Tardajos, A.; Nuti, S.; Velde, C. V.; De Wael, K.; Lenaerts, S.; Bals, S.; Verbruggen, S. W. Selectivity in the Ligand Functionalization of Photocatalytic Metal Oxide Nanoparticles for Phase Transfer and Self-Assembly Applications. Chem. Eur. J. 2021, 27 (35), 9011–9021. https://doi.org/10.1002/chem.202100029
Cao, Z.; Yang, L.; Chen, H.; Xu, C.; Qi, D.; Zhu, S.; Ziener, U. Preparation of Au/TiO2 nanocomposite particles with high visible-light photocatalytic activity in inverse miniemulsions. Colloid Polym. Sci. 2015, 293, 277–288. https://doi.org/10.1007/s00396-014-3412-8
Chen, X.; Mao, S. S. Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. Chem. Rev. 2007, 107 (7), 2891–2959. https://doi.org/10.1021/cr0500535
Choi, D.; Kim, J. H.; Kwon, D. C.; Shin, C. H.; Ryu, H.; Yoon, E.; Lee, H.-C. Crystalline silicon nanoparticle formation by tailored plasma irradiation: Self-structurization, nucleation and growth acceleration, and size control. Nanoscale 2021, 13 (23), 10356–10364. https://doi.org/10.1039/D1NR00628B
Conte, M.; Miyamura, H.; Kobayashi, S.; Chechik, V. Enhanced acyl radical formation in the Au nanoparticle-catalysed aldehydeoxidation. Chem. Commun. 2010, 46 (1), 145–147. https://doi.org/10.1039/B918200D
Dalod, A. R. M.; Henriksen, L.; Grande, T.; Einarsrud, M.-A. Functionalized TiO2 nanoparticles by single-step hydrothermal synthesis: The role of the silane coupling agents. Beilstein J. Nanotechnol. 2017, 8 (1), 304–312. https://doi.org/10.3762/bjnano.8.33
Diez-Castellnou, M.; Suo, R.; Marro, N.; Matthew, S. A. L.; Kay, E. R. Rapidly adaptive all-covalent nanoparticle surface engineering. Chem. Eur. J. 2021, 27 (38), 9948–9953. https://doi.org/10.1002/chem.202101042
Du, M.; Zeng, G.; Ye, C.; Jin, H.; Huang, J.; Sun, D.; Li, Q.; Chen, B.; Li, X. Solvent-free photo-thermocatalytic oxidation of benzyl alcohol on Pd/TiO2 (B) nanowires. Mol. Catal. 2020, 483, 110771. https://doi.org/10.1016/j.mcat.2020.110771
Fristrup, P.; Johansen, L. B.; Christensen, C. H. Mechanistic investigation of the gold-catalyzed aerobic oxidation of aldehydes: added insight from Hammett studies and isotopic labelling experiments. Chem. Commun. 2008, 7345 (24), 2750–2752. https://doi.org/10.1039/b803270j
Gorup, L. F.; Longo, E.; Leite, E. R.; Camargo, E. R. Moderating effect of ammonia on particle growth and stability of quasi-monodisperse silver nanoparticles synthesized by the Turkevich method. J. Colloid Interface Sci. 2011, 360 (2), 355–358. https://doi.org/10.1016/j.jcis.2011.04.099
Gupta, S. M.; Tripathi, M. A review of TiO2 nanoparticles. Chin. Sci. Bull. 2011, 56, 1639. https://doi.org/10.1007/s11434-011-4476-1
Gupta, Y.; Ghrera, A. S. Recent advances in gold nanoparticle-based lateral flow immunoassay for the detection of bacterial infection. Arch. Microbiol. 2021, 203, 3767–3784. https://doi.org/10.1007/s00203-021-02357-9
Haider, A. J.; Al-Anbari, R. H.; Kadhim, G. R.; Salame, C. T. Exploring potential environmental applications of TiO2 nanoparticles. Energy Procedia 2017, 119, 332–345. https://doi.org/10.1016/j.egypro.2017.07.117
Kafshgari, M. H.; Goldmann, W. H. Insights into theranostic properties of titanium dioxide for nanomedicine. Nano-Micro Lett. 2020, 12, 22. https://doi.org/10.1007/s40820-019-0362-1
Kaneta, K.; Tahara, S.; Idota, N.; Sugahara, Y. Preparation of inorganic-organic hybrid gels by radical exchange reaction using TiO2 nanoparticles modified with organophosphonic acid bearing C-ON bonds. Mater. Today Proc. 2019, 16 (Part. 1), 180–186. https://doi.org/10.1016/j.matpr.2019.05.291
Li, J.; Wu, X.; Liu, S. W. Fluorinated TiO2 Hollow Photocatalysts for Photocatalytic Applications. Wuli Huaxue Xuebao/ Acta Phys. - Chim. Sin. 2021, 37 (6), 2009038. https://doi.org/10.3866/PKU.WHXB202009038.
Lin, X.; Chen, H.; Hu, Z.; Hou, Y.; Dai, W. Enhanced visible light photocatalysis of TiO2 by Co-modification with Eu and Au nanoparticles. Solid State Sci. 2018, 83, 181–187. https://doi.org/10.1016/j.solidstatesciences.2018.07.007
Liu, J.; Zou, S.; Lu, L.; Zhao, H.; Xiao, L.; Fan, J. Room temperature selective oxidation of benzyl alcohol under base-free aqueous conditions on Pt/TiO2. Catal. Commun. 2017, 99, 6–9. https://doi.org/10.1016/j.catcom.2017.05.015
McNamara, K.; Tofail, S. A. M. Nanoparticles in biomedical applications. Adv. Phys. X 2017, 2 (1), 54–88. https://doi.org/10.1080/23746149.2016.1254570
Messaddeq, S. H.; Bonnet, A.-S.; Santagnelli, S. H.; Salek, G.; Colmenares, Y. N.; Messaddeq, Y. Photopolymerized hybrids containing TiO2 nanoparticles for gradient-index lens. Mater. Chem. Phys. 2019, 236, 121793. https://doi.org/10.1016/j.matchemphys.2019.121793
Mitra, A.; Trifkovic, M.; Ponnurangam, S. Surface functionalization-induced effects on nanoparticle dispersion and associated changes in the thermophysical properties of polymer nanocomposites. Macromolecules 2021, 54 (9), 3962–3971. https://doi.org/10.1021/acs.macromol.1c00184
Montalvo-Quiros, S.; Luque-Garcia, J. L. Combination of bioanalytical approaches and quantitative proteomics for the elucidation of the toxicity mechanisms associated to TiO2 nanoparticles exposure in human keratinocytes. Food Chem. Toxicol. 2019, 127, 197–205. https://doi.org/10.1016/j.fct.2019.03.036
Mourdikoudis, S.; Kostopoulou, A.; LaGrow, A. P. Magnetic nanoparticle composites: Synergistic effects and applications. Adv. Sci. 2021, 8 (12), 2004951. https://doi.org/10.1002/advs.202004951
Nowicka, E.; Althahban, S.; Leah, T. D.; Shaw, G.; Morgan, D.; Kiely, C. J.; Roldan, A.; Hutchings, G. J. Benzyl alcohol oxidation with Pd-Zn/TiO2: Computational and experimental studies. Sci. Technol. Adv. Mater. 2019, 20 (1), 367–378. https://doi.org/10.1080/14686996.2019.1598237
Ozdal, Z. D.; Sahmetlioglu, E.; Narin, I.; Cumaoglu, A. Synthesis of gold and silver nanoparticles using flavonoid quercetin and their effects on lipopolysaccharide induced inflammatory response in microglial cells. 3 Biotech 2019, 9 (6), 212. https://doi.org/10.1007/s13205-019-1739-z
Radetić, M. Functionalization of textile materials with TiO2 nanoparticles. J. Photochem. Photobiol. C: Photochem. Rev. 2013, 16, 62–76. https://doi.org/10.1016/j.jphotochemrev.2013.04.002
Reddy, P. N. K.; Shaik, D. P. M. D.; Ganesh, V.; Nagamalleswari, D.; Thyagarajan, K.; Prasanth, P. V. Structural, optical and electrochemical properties of TiO2 nanoparticles synthesized using medicinal plant leaf extract. Ceram. Int. 2019, 45 (13), 16251–16260. https://doi.org/10.1016/j.ceramint.2019.05.147
Sankar, M.; Nowicka, E.; Carter, E.; Murphy, D. M.; Knight, D. W.; Bethell, D.; Hutchings, G. J. The benzaldehyde oxidation paradox explained by the interception of peroxy radical by benzyl alcohol. Nat. Commun. 2014, 5, 3332. https://doi.org/10.1038/ncomms4332
Srinivasan, M.; Venkatesan, M.; Arumugam, V.; Natesan, G. Green synthesis and characterization of titanium dioxide nanoparticles (TiO2 NOPs) using Sesbania grandiflora and evaluation of toxicity in zebra fish embryos. Process Biochem. 2019, 80, 197–202. https://doi.org/10.1016/j.procbio.2019.02.010
Sun, J.; Han, Y.; Fu, H.; Qu, X.; Xu, Z.; Zheng, S. Au@Pd/TiO2 with atomically dispersed pd as highly active catalyst for solvent-free aerobic oxidation of benzyl alcohol. Chem. Eng. J. 2017, 313, 1–9. https://doi.org/10.1016/j.cej.2016.12.024
Tayel, A.; Ramadan, A. R.; El Seoud, O. A. Titanium dioxide/graphene and titanium dioxide/graphene oxide nanocomposites: synthesis, characterization and photocatalytic applications for water decontamination. Catalysts 2018, 8 (11), 491. https://doi.org/10.3390/catal8110491
Tomovska, R.; Daniloska, V.; Asua, J. M. UV/Vis photocatalytic functionalization of TiO2 nanoparticle surfaces toward water repellent properties. J. Mater. Chem. 2011, 21 (43), 17492–17497. https://doi.org/10.1039/c1jm13412d
Verma, P.; Mori, K.; Kuwahara, Y.; Cho, S. J.; Yamashita, H. Synthesis of plasmonic gold nanoparticles supported on morphology-controlled TiO2 for aerobic alcohol oxidation. Catal. Today 2020, 35, 255–261. https://doi.org/10.1016/j.cattod.2019.10.014
Wang, Z.; Feng, J.; Li, X.; Oh, R.; Shi, D.; Akdim, O.; Xia, M.; Zhao, L.; Huang, X.; Zhang, G. Au-Pd nanoparticles immobilized on TiO2 nanosheet as an active and durable catalyst for solvent-free selective oxidation of benzyl alcohol. J. Colloid Interface Sci. 2021, 588, 787–794. https://doi.org/10.1016/j.jcis.2020.11.112
Weerachawanasak, P.; Hutchings, G. J.; Edwards, J. K.; Kondrat, S. A.; Miedziak, P. J.; Prasertham, P.; Panpranot, J. Surface functionalized TiO2 supported Pd catalysts for solvent-free selective oxidation of benzyl alcohol. Catal. Today 2015, 250, 218–225. https://doi.org/10.1016/j.cattod.2014.06.005
Wu, Y.; Chen, L.; Chen, F.; Zou, H.; Wang, Z. A key moment for TiO2: Prenatal exposure to TiO2 nanoparticles may inhibit the development of offspring. Ecotoxicol. Environ. Saf. 2020, 202. https://doi.org/10.1016/j.ecoenv.2020.110911
Yan, J.; Feng, S.; Lu, H.; Wang, J.; Zheng, J.; Zhao, J.; Li, L.; Zhu, Z. Alcohol induced liquid-phase synthesis of rutile titania nanotubes. Mater. Sci. Eng. B 2010, 172 (2), 114–120. https://doi.org/10.1016/j.mseb.2010.04.032
Yang, F.; Liu, X.; Yang, Z. Chiral metal nanoparticle superlattices enabled by porphyrin-based supramolecular structures. Angew. Chemie Int. Ed. 2021, 60 (26), 14671–14678. https://doi.org/10.1002/anie.202103809
Zare, M.; Sarkati, M. N. Chitosan-functionalized Fe3O4 nanoparticles as an excellent biocompatible nanocarrier for silymarin delivery. Polym. Adv. Technol. 2021, 32 (10). 4094–4100. https://doi.org/10.1002/pat.5416
Zhang, J.; Wang, D.; Zhang, H. One-step hydrothermal synthesis of small TiO2 porous nanoparticles for efficient degradation of organic dyes. J. Nanosci. Nanotechnol. 2017, 18 (5), 3185–3191. https://doi.org/10.1166/jnn.2018.14663
Zhang, X.-F.; Wang, Z.; Zhong, Y.; Qiu, J.; Zhang, X.; Gao, Y.; Gu, X.; Yao, J. TiO2 nanorods loaded with Au–Pt alloy nanoparticles for the photocatalytic oxidation of benzyl alcohol. J. Phys. Chem. Solids 2019, 126, 27–32. https://doi.org/10.1016/j.jpcs.2018.10.026
Zhao, C.; Zhao, Q.; Zhao, Q.; Qiu, J.; Zhu, C. Deposition of Au/TiO2 film by pulsed laser. Appl. Surf. Sci. 2006, 252 (20), 7415–7421. https://doi.org/10.1016/j.apsusc.2005.08.086
Zhao, W.; Li, Y.; Shen, W. Tuning the shape and crystal phase of TiO2 nanoparticles for catalysis. Chem. Commun. 2021, 57 (56), 6838–6850. https://doi.org/10.1039/D1CC01523K
Zheng, G.; Peng, H.; Jiang, J.; Kang, G.; Liu, J.; Zheng, J.; Liu, Y. Surface functionalization of PEO nanofibers using a TiO2 suspension as sheath fluid in a modified coaxial electrospinning process. Chem. Res. Chin. Univ. 2021, 37 (3), 571–577. https://doi.org/10.1007/s40242-021-1118-2