Influence of Cu-doped TiO2 on its structural and photocatalytic properties
Main Article Content
Abstract
Due to the potential of heterogeneous photocatalysis for wastewater treatment, the researches concerning the improvement materials modifications for its photocatalytic activity have been widely increased. One of the most employed methods is the metal doping into semiconductors. Herewith, we demonstrated the influence of Cu doping into TiO2 in its photocatalytic properties. The powder samples with 0.0 to 0.7% mol were obtained by the Pechini method and characterized by XRD, micro-Raman spectroscopy, FE-SEM, and photoluminescence spectroscopy. The Cu insertion into TiO2 structure induced the stabilization of anatase phase, increasing its content in the samples in relation to the bare TiO2. The PL results indicated that a decrease in the PL emission intensity and a shift of the emission band to the blue region. The photocatalytic activity for rhodamine B degradation under UV light irradiation indicated that the Cu-doping into TiO2 led to an enhancement of the photocatalytic activity compared to the bare one.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
Funding data
-
Fundação de Amparo à Pesquisa do Estado de São Paulo
Grant numbers 2013/07296-2 -
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Grant numbers 142035/2017-3 -
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Grant numbers 001
References
Alexander, L.; Klug, H. P. Determination of crystallite size with the x-ray spectrometer. J. Appl. Phys. 1950, 21 (2), 137–142. https://doi.org/10.1063/1.1699612
Carp, O.; Huisman, C. L.; Reller, A. Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 2004, 32 (1–2), 33–177. https://doi.org/10.1016/j.progsolidstchem.2004.08.001
Chen, W. F.; Chen, H.; Koshy, P.; Nakaruk, A.; Sorrell, C. C. Effect of doping on the properties and photocatalytic performance of titania thin films on glass substrates: Single-ion doping with Cobalt or Molybdenum. Mater. Chem. Phys. 2018a, 205, 334–346. https://doi.org/10.1016/j.matchemphys.2017.11.021
Chen, W. F.; Mofarah, S. S.; Hanaor, D. A. H.; Koshy, P.; Chen, H.-K.; Yue, J.; Sorrel, C. C. Enhancement of Ce/Cr codopant solubility and chemical homogeneity in TiO2 nanoparticles through sol−gel versus Pechini syntheses. Inorg. Chem. 2018b, 57 (12), 7279−7289. https://doi.org/10.1021/acs.inorgchem.8b00926
Choi, J.; Park, H.; Hoffmann, M. R. Effects of single metal-ion doping on the visible-light photoreactivity of TiO2. J. Phys. Chem. C. 2010, 114 (2), 783–792. https://doi.org/10.1021/jp908088x
Cruz, L.; Teixeira, M. M.; Teodoro, V.; Jacomaci, N.; Laier, L. O.; Assis, M.; Macedo, N. G.; Tello, A. C. M.; Silva, L. F.; Marques, G. E.; Zaghete, M. A.; Teodoro, M. D.; Longo, E. Multi-dimensional architecture of Ag/α-Ag2WO4 crystals: Insights into microstructural, morphological, and photoluminescence properties. CrystEngComm. 2020, 22 (45), 7903–7917. https://doi.org/10.1039/D0CE00876A
Dashora, A.; Patel, N.; Kothari, D. C.; Ahuja, B. L.; Miotello, A. Formation of an intermediate band in the energy gap of TiO2 by Cu – N-codoping : First principles study and experimental evidence. Sol. Energy Mater. Sol. Cells. 2014, 125, 120–126. https://doi.org/10.1016/j.solmat.2014.02.032
Fujishima, A.; Rao, T. N.; Tryk, D. A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C Photochem. Rev. 2000, 1 (1), 1–21. https://doi.org/10.1016/S1389-5567(00)00002-2
Galindo, C.; Jacques, P.; Kalt A. Photodegradation of the aminoazobenzene acid orange 52 by three advanced oxidation processes : UV/H2O2 , UV/TiO2 and VIS/TiO2: Comparative mechanistic and kinetic investigations. J. Photochem. Photobiol. A Chem. 2000, 130 (1), 35–47. https://doi.org/10.1016/S1010-6030(99)00199-9
Gaya, U. I.; Abdullah, A. H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide : A review of fundamentals , progress and problems. J. Photochem. Photobiol. C Photochem. Rev. 2008, 9 (1), 1–12. https://doi.org/10.1016/j.jphotochemrev.2007.12.003
Gupta, S. M.; Tripathi, M. A review of TiO2 nanoparticles. Chin. Sci. Bull. 2011, 56, 1639. https://doi.org/10.1007/s11434-011-4476-1
Hanaor, D. A. H.; Sorrell, C. C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 2011, 46, 855–874. https://doi.org/10.1007/s10853-010-5113-0
Hu, Y.; Tsai, H.-L.; Huang, C.-L. Phase transformation of precipitated TiO2 nanoparticles. Mater. Sci. Eng. A 2003, 344 (1–2), 209–214. https://doi.org/10.1016/S0921-5093(02)00408-2
Jin, C.; Liu, B.; Lei, Z.; Sun, J. Structure and photoluminescence of the TiO2 films grown by atomic layer deposition using tetrakis-dimethylamino titanium and ozone. Nanoscale Res. Lett. 2015, 10, 95–103. https://doi.org/10.1186/s11671-015-0790-x
Li, J.; Xu, X.; Liu, X.; Yu, C.; Yan, D.; Sun, Z.; Pan, L. Sn doped TiO2 nanotube with oxygen vacancy for highly efficient visible light photocatalysis. J. Alloys Compd. 2016, 679, 454–462. https://doi.org/10.1016/j.jallcom.2016.04.080
Liu, B.; Zhao, X.; Terashima, C.; Fujishima, A.; Nakata. K. Thermodynamic and kinetic analysis of heterogeneous photocatalysis for semiconductor systems. Phys. Chem. Chem. Phys. 2014, 16 (19), 8751–8760. https://doi.org/10.1039/c3cp55317e
Liu, G.; Wang, L.; Yang, H. G.; Cheng, H. M.; Lu, G. Q. Titania-based photocatalysts—crystal growth, doping and heterostructuring. J. Mater. Chem. 2010, 20 (5), 831–843. https://doi.org/10.1039/B909930A
Longo, V. M.; Figueiredo, A. T.; Lázaro S.; Gurgel, M. F.; Costa, M. G. S.; Paiva-Santos, C. O.; Varela, J. A.; Longo, E.; Masteralo, V. R.; De Vicente, F. S.; Hernandes, A. C.; Franco, R. W. A. Structural conditions that leads to photoluminescence emission in SrTiO3: An experimental and theoretical approach. J. Appl. Phys. 2008, 104 (2), 023515. https://doi.org/10.1063/1.2956741
Nakata, K.; Fujishima, A. TiO2 photocatalysis : Design and applications. J. Photochem. Photobiol. C Photochem. Rev. 2012, 13 (3), 169–189. https://doi.org/10.1016/j.jphotochemrev.2012.06.001
Nasr, M.; Chaaya, A. A.; Abboud, N.; Bachelany, M.; Viter, R.; Eid, C.; Khoury, A.; Miele, P. Photoluminescence: A very sensitive tool to detect the presence of anatase in rutile phase electrospun TiO2 nanofibers. Superlattices Microstruct. 2015, 77, 18–24. https://doi.org/10.1016/j.spmi.2014.10.034
Naumenko, A.; Gnatiuk, I.; Smirnova, N.; Eremenko, A. Characterization of sol-gel derived TiO2/ZrO2 films and powders by Raman spectroscopy. Thin Solid Films. 2012, 520 (14), 4541–4546. https://doi.org/10.1016/j.tsf.2011.10.189
Neris, A. M.; Schreiner, W. H.; Salvador, C.; Silva, U. C.; Chesman, C.; Longo, E.; Santos, I. M. G. Photocatalytic evaluation of the magnetic core@shell system (Co,Mn)Fe2O4@TiO2 obtained by the modified Pechini method. Mater. Sci. Eng. B. 2018, 229, 218–226. https://doi.org/10.1016/j.mseb.2017.12.029
Ohsaka, T.; Izumi, F.; Fujiki, Y. Raman spectrum of anatase, TiO2. J. Raman Spectrosc. 1978, 7 (6), 321–324.
Qi, F.; Moiseev, A.; Deubener, J.; Weber, A. Thermostable photocatalytically active TiO2 anatase nanoparticles. J. Nanoparticle Res. 2011, 13, 1325–1334. https://doi.org/10.1007/s11051-010-0211-0
Qourzal, S.; Tamimi, M.; Assabbane, A.; Ait-Ichou, Y. Photocatalytic degradation and adsorption of 2-naphthol on suspended TiO2 surface in a dynamic reactor. J. Colloid Interface Sci. 2005, 286 (2), 621–626. https://doi.org/10.1016/j.jcis.2005.01.046
Rashad, M. M.; Ismail, A. A.; Osama, I.; Ibrahim, I. A.; Kandil, A.-H. T. Photocatalytic decomposition of dyes using ZnO doped SnO2 nanoparticles prepared by solvothermal method. Arab. J. Chem. 2014, 7 (1), 71–77. https://doi.org/10.1016/j.arabjc.2013.08.016
Ricci, P. C.; Carbonaro, C. M.; Stagi, L.; Salis, M.; Casu, A.; Enzo, S.; Delogu, F. Anatase-to-rutile phase transition in TiO2 nanoparticles irradiated by visible light. J. Phys. Chem. C 2013, 117 (15), 7850–7857. https://doi.org/10.1021/jp312325h
Sahoo, S.; Arora, A. K.; Sridharan, V. Raman line shapes of optical phonons of different symmetries in anatase TiO2 nanocrystals. J. Phys. Chem. C. 2009, 113 (39), 16927–16933. https://doi.org/10.1021/jp9046193
Sanchez-Dominguez, M.; Morales-Mendoza, G.; Rodriguez-Vargas, M. J.; Ibarra-Malo, C. C.; Rodriguez-Ridriguez, A. A.; Vela-Gonzalez, A. V.; Perez-Garcia, S. A.; Gomez, R. Synthesis of Zn-doped TiO2 nanoparticles by the novel oil-in-water (O/W) microemulsion method and their use for the photocatalytic degradation of phenol. J. Environ. Chem. Eng. 2015, 3 (4) (Part B), 3037–3047. https://doi.org/10.1016/j.jece.2015.03.010
Shannon, R. D.; Pask, J. A. Kinetics of the anatase-rutile transformation. J. Am. Ceram. Soc. 1965, 48 (8), 391–398. https://doi.org/10.1111/j.1151-2916.1965.tb14774.x
Silva Junior, E; La Porta, F. A.; Liu, M. S.; Andrés, J.; Varela, J. A.; Longo, E. A relationship between structural and electronic order–disorder effects and optical properties in crystalline TiO2 nanomaterials. Dalt. Trans. 2015, 44 (7), 3159–3175. https://doi.org/10.1039/C4DT03254C
Silva, J. S.; Machado, T. R.; Trench, A. B.; Silva, A. D.; Teodoro, V.; Vieira, P. C.; Martins, T. A.; Longo, E. Enhanced photocatalytic and antifungal activity of hydroxyapatite/α-AgVO3 composites. Mater. Chem. Phys. 2020, 252, 123294. https://doi.org/10.1016/j.matchemphys.2020.123294
Spurr, R. A.; Myers, H. Quantitative analysis of anatase-rutile mixtures with an x-ray diffractometer. Anal. Chem. 1957, 29 (5), 760–762. https://doi.org/10.1021/ac60125a006
Swamy, V.; Muddle, B. C. Size-dependent modifications of the Raman spectrum of rutile TiO2. Appl. Phys. Lett. 2006, 89, 163118. https://doi.org/10.1063/1.2364123
Tello, A. C. M.; Assis, M.; Menasce, R.; Gouveia, A. F.; Teodoro, V.; Jacomaci, N.; Zaghete, M. A.; Andrés, J.; Marques, G. E.; Teodoro, M. D.; Silva, A. B. F.; Bettini, J.; Longo, E. Microwave-driven hexagonal-to-monoclinic transition in BiPO4: An in-depth experimental investigation and first-principles study. Inorg Chem. 2020, 59 (11), 7453–7468. https://doi.org/10.1021/acs.inorgchem.0c00181
Vargas Hernández, J.; Coste, S.; García Murillo, A.; Carrillo Romo, F.; Kassiba, A. Effects of metal doping (Cu, Ag, Eu) on the electronic and optical behavior of nanostructured TiO2. J. Alloys Compd. 2017, 710, 355–363. https://doi.org/10.1016/j.jallcom.2017.03.275
Wang, H.; Li, Y.; Ba, X.; Huang, L.; Yu, Y. TiO2 thin films with rutile phase prepared by DC magnetron co-sputtering at room temperature: Effect of Cu incorporation. Appl. Surf. Sci. 2015, 345, 49–56. https://doi.org/10.1016/j.apsusc.2015.03.106
Wang, Q.; Jin, R.; Zhang, M.; Gao, S. Solvothermal preparation of Fe-doped TiO2 nanotube arrays for enhancement in visible light induced photoelectrochemical performance. J. Alloys Compd. 2017, 690, 139–144. https://doi.org/10.1016/j.jallcom.2016.07.281
Wang, S.; Meng, K. K.; Zhao, L.; Jiang, Q.; Lian, J. S. Superhydrophilic Cu-doped TiO2 thin film for solar-driven photocatalysis. Ceram. Int. 2014, 40 (4), 5107–5110. https://doi.org/10.1016/j.ceramint.2013.09.028
Xiao, J.; Xie, Y.; Cao, H.; Nawaz, F.; Zhang, S.; Wang, Y. Disparate roles of doped metal ions in promoting surface oxidation of TiO2 photocatalysis. J. Photochem. Photobiol. A Chem. 2016, 315, 59–66. https://doi.org/10.1016/j.jphotochem.2015.09.013
Zhang, L.; Guo, J.; Huang, X.; Zhang, Y.; Han, Y. The dual function of Cu-doped TiO2 coatings on titanium for application in percutaneous implants. J. Mater. Chem. B 2016, 4 (21), 3788–3800. https://doi.org/10.1039/C6TB00563B
Zhang, L.; Li, Y.; Zhang, Q.; Wang, H. Well-dispersed Pt nanocrystals on the heterostructured TiO2/SnO2 nanofibers and the enhanced photocatalytic properties. Appl. Surf. Sci. 2014, 319, 21–28. https://doi.org/10.1016/j.apsusc.2014.07.199
Zhang, Y.; Meng, Y.; Zhu, K.; Qiu, H.; Ju, Y.; Gao, Y.; Du, F.; Zou, B.; Chen, G.; Wei, Y. Copper-doped titanium dioxide bronze nanowires with superior high rate capability for lithium ion batteries. Appl. Mater. Interfaces 2016, 8 (12), 7957–7965. https://doi.org/10.1021/acsami.5b10766
Zhu, S.-C.; Xie, S.-H.; Liu, Z-P. Nature of rutile nuclei in anatase-to-rutile phase transition. J. Am. Chem. Soc. 2015, 137 (35),11532–11539. https://doi.org/10.1021/jacs.5b07734