Influence of Cu-doped TiO2 on its structural and photocatalytic properties

Main Article Content

Vinícius Teodoro
Elson Longo
Maria Aparecida Zaghete
Leinig Antonio Perazolli

Abstract

Due to the potential of heterogeneous photocatalysis for wastewater treatment, the researches concerning the improvement materials modifications for its photocatalytic activity have been widely increased. One of the most employed methods is the metal doping into semiconductors. Herewith, we demonstrated the influence of Cu doping into TiO2 in its photocatalytic properties. The powder samples with 0.0 to 0.7% mol were obtained by the Pechini method and characterized by XRD, micro-Raman spectroscopy, FE-SEM, and photoluminescence spectroscopy. The Cu insertion into TiO2 structure induced the stabilization of anatase phase, increasing its content in the samples in relation to the bare TiO2. The PL results indicated that a decrease in the PL emission intensity and a shift of the emission band to the blue region. The photocatalytic activity for rhodamine B degradation under UV light irradiation indicated that the Cu-doping into TiO2 led to an enhancement of the photocatalytic activity compared to the bare one.

Metrics

Metrics Loading ...

Article Details

How to Cite
Teodoro, V., Longo, E., Zaghete, M. A., & Perazolli, L. A. (2022). Influence of Cu-doped TiO2 on its structural and photocatalytic properties. Eclética Química, 47(1SI), 130–140. https://doi.org/10.26850/1678-4618eqj.v47.1SI.2022.p130-140
Section
Original articles

References

Alexander, L.; Klug, H. P. Determination of crystallite size with the x-ray spectrometer. J. Appl. Phys. 1950, 21 (2), 137–142. https://doi.org/10.1063/1.1699612

Carp, O.; Huisman, C. L.; Reller, A. Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 2004, 32 (1–2), 33–177. https://doi.org/10.1016/j.progsolidstchem.2004.08.001

Chen, W. F.; Chen, H.; Koshy, P.; Nakaruk, A.; Sorrell, C. C. Effect of doping on the properties and photocatalytic performance of titania thin films on glass substrates: Single-ion doping with Cobalt or Molybdenum. Mater. Chem. Phys. 2018a, 205, 334–346. https://doi.org/10.1016/j.matchemphys.2017.11.021

Chen, W. F.; Mofarah, S. S.; Hanaor, D. A. H.; Koshy, P.; Chen, H.-K.; Yue, J.; Sorrel, C. C. Enhancement of Ce/Cr codopant solubility and chemical homogeneity in TiO2 nanoparticles through sol−gel versus Pechini syntheses. Inorg. Chem. 2018b, 57 (12), 7279−7289. https://doi.org/10.1021/acs.inorgchem.8b00926

Choi, J.; Park, H.; Hoffmann, M. R. Effects of single metal-ion doping on the visible-light photoreactivity of TiO2. J. Phys. Chem. C. 2010, 114 (2), 783–792. https://doi.org/10.1021/jp908088x

Cruz, L.; Teixeira, M. M.; Teodoro, V.; Jacomaci, N.; Laier, L. O.; Assis, M.; Macedo, N. G.; Tello, A. C. M.; Silva, L. F.; Marques, G. E.; Zaghete, M. A.; Teodoro, M. D.; Longo, E. Multi-dimensional architecture of Ag/α-Ag2WO4 crystals: Insights into microstructural, morphological, and photoluminescence properties. CrystEngComm. 2020, 22 (45), 7903–7917. https://doi.org/10.1039/D0CE00876A

Dashora, A.; Patel, N.; Kothari, D. C.; Ahuja, B. L.; Miotello, A. Formation of an intermediate band in the energy gap of TiO2 by Cu – N-codoping : First principles study and experimental evidence. Sol. Energy Mater. Sol. Cells. 2014, 125, 120–126. https://doi.org/10.1016/j.solmat.2014.02.032

Fujishima, A.; Rao, T. N.; Tryk, D. A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C Photochem. Rev. 2000, 1 (1), 1–21. https://doi.org/10.1016/S1389-5567(00)00002-2

Galindo, C.; Jacques, P.; Kalt A. Photodegradation of the aminoazobenzene acid orange 52 by three advanced oxidation processes : UV/H2O2 , UV/TiO2 and VIS/TiO2: Comparative mechanistic and kinetic investigations. J. Photochem. Photobiol. A Chem. 2000, 130 (1), 35–47. https://doi.org/10.1016/S1010-6030(99)00199-9

Gaya, U. I.; Abdullah, A. H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide : A review of fundamentals , progress and problems. J. Photochem. Photobiol. C Photochem. Rev. 2008, 9 (1), 1–12. https://doi.org/10.1016/j.jphotochemrev.2007.12.003

Gupta, S. M.; Tripathi, M. A review of TiO2 nanoparticles. Chin. Sci. Bull. 2011, 56, 1639. https://doi.org/10.1007/s11434-011-4476-1

Hanaor, D. A. H.; Sorrell, C. C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 2011, 46, 855–874. https://doi.org/10.1007/s10853-010-5113-0

Hu, Y.; Tsai, H.-L.; Huang, C.-L. Phase transformation of precipitated TiO2 nanoparticles. Mater. Sci. Eng. A 2003, 344 (1–2), 209–214. https://doi.org/10.1016/S0921-5093(02)00408-2

Jin, C.; Liu, B.; Lei, Z.; Sun, J. Structure and photoluminescence of the TiO2 films grown by atomic layer deposition using tetrakis-dimethylamino titanium and ozone. Nanoscale Res. Lett. 2015, 10, 95–103. https://doi.org/10.1186/s11671-015-0790-x

Li, J.; Xu, X.; Liu, X.; Yu, C.; Yan, D.; Sun, Z.; Pan, L. Sn doped TiO2 nanotube with oxygen vacancy for highly efficient visible light photocatalysis. J. Alloys Compd. 2016, 679, 454–462. https://doi.org/10.1016/j.jallcom.2016.04.080

Liu, B.; Zhao, X.; Terashima, C.; Fujishima, A.; Nakata. K. Thermodynamic and kinetic analysis of heterogeneous photocatalysis for semiconductor systems. Phys. Chem. Chem. Phys. 2014, 16 (19), 8751–8760. https://doi.org/10.1039/c3cp55317e

Liu, G.; Wang, L.; Yang, H. G.; Cheng, H. M.; Lu, G. Q. Titania-based photocatalysts—crystal growth, doping and heterostructuring. J. Mater. Chem. 2010, 20 (5), 831–843. https://doi.org/10.1039/B909930A

Longo, V. M.; Figueiredo, A. T.; Lázaro S.; Gurgel, M. F.; Costa, M. G. S.; Paiva-Santos, C. O.; Varela, J. A.; Longo, E.; Masteralo, V. R.; De Vicente, F. S.; Hernandes, A. C.; Franco, R. W. A. Structural conditions that leads to photoluminescence emission in SrTiO3: An experimental and theoretical approach. J. Appl. Phys. 2008, 104 (2), 023515. https://doi.org/10.1063/1.2956741

Nakata, K.; Fujishima, A. TiO2 photocatalysis : Design and applications. J. Photochem. Photobiol. C Photochem. Rev. 2012, 13 (3), 169–189. https://doi.org/10.1016/j.jphotochemrev.2012.06.001

Nasr, M.; Chaaya, A. A.; Abboud, N.; Bachelany, M.; Viter, R.; Eid, C.; Khoury, A.; Miele, P. Photoluminescence: A very sensitive tool to detect the presence of anatase in rutile phase electrospun TiO2 nanofibers. Superlattices Microstruct. 2015, 77, 18–24. https://doi.org/10.1016/j.spmi.2014.10.034

Naumenko, A.; Gnatiuk, I.; Smirnova, N.; Eremenko, A. Characterization of sol-gel derived TiO2/ZrO2 films and powders by Raman spectroscopy. Thin Solid Films. 2012, 520 (14), 4541–4546. https://doi.org/10.1016/j.tsf.2011.10.189

Neris, A. M.; Schreiner, W. H.; Salvador, C.; Silva, U. C.; Chesman, C.; Longo, E.; Santos, I. M. G. Photocatalytic evaluation of the magnetic core@shell system (Co,Mn)Fe2O4@TiO2 obtained by the modified Pechini method. Mater. Sci. Eng. B. 2018, 229, 218–226. https://doi.org/10.1016/j.mseb.2017.12.029

Ohsaka, T.; Izumi, F.; Fujiki, Y. Raman spectrum of anatase, TiO2. J. Raman Spectrosc. 1978, 7 (6), 321–324.

Qi, F.; Moiseev, A.; Deubener, J.; Weber, A. Thermostable photocatalytically active TiO2 anatase nanoparticles. J. Nanoparticle Res. 2011, 13, 1325–1334. https://doi.org/10.1007/s11051-010-0211-0

Qourzal, S.; Tamimi, M.; Assabbane, A.; Ait-Ichou, Y. Photocatalytic degradation and adsorption of 2-naphthol on suspended TiO2 surface in a dynamic reactor. J. Colloid Interface Sci. 2005, 286 (2), 621–626. https://doi.org/10.1016/j.jcis.2005.01.046

Rashad, M. M.; Ismail, A. A.; Osama, I.; Ibrahim, I. A.; Kandil, A.-H. T. Photocatalytic decomposition of dyes using ZnO doped SnO2 nanoparticles prepared by solvothermal method. Arab. J. Chem. 2014, 7 (1), 71–77. https://doi.org/10.1016/j.arabjc.2013.08.016

Ricci, P. C.; Carbonaro, C. M.; Stagi, L.; Salis, M.; Casu, A.; Enzo, S.; Delogu, F. Anatase-to-rutile phase transition in TiO2 nanoparticles irradiated by visible light. J. Phys. Chem. C 2013, 117 (15), 7850–7857. https://doi.org/10.1021/jp312325h

Sahoo, S.; Arora, A. K.; Sridharan, V. Raman line shapes of optical phonons of different symmetries in anatase TiO2 nanocrystals. J. Phys. Chem. C. 2009, 113 (39), 16927–16933. https://doi.org/10.1021/jp9046193

Sanchez-Dominguez, M.; Morales-Mendoza, G.; Rodriguez-Vargas, M. J.; Ibarra-Malo, C. C.; Rodriguez-Ridriguez, A. A.; Vela-Gonzalez, A. V.; Perez-Garcia, S. A.; Gomez, R. Synthesis of Zn-doped TiO2 nanoparticles by the novel oil-in-water (O/W) microemulsion method and their use for the photocatalytic degradation of phenol. J. Environ. Chem. Eng. 2015, 3 (4) (Part B), 3037–3047. https://doi.org/10.1016/j.jece.2015.03.010

Shannon, R. D.; Pask, J. A. Kinetics of the anatase-rutile transformation. J. Am. Ceram. Soc. 1965, 48 (8), 391–398. https://doi.org/10.1111/j.1151-2916.1965.tb14774.x

Silva Junior, E; La Porta, F. A.; Liu, M. S.; Andrés, J.; Varela, J. A.; Longo, E. A relationship between structural and electronic order–disorder effects and optical properties in crystalline TiO2 nanomaterials. Dalt. Trans. 2015, 44 (7), 3159–3175. https://doi.org/10.1039/C4DT03254C

Silva, J. S.; Machado, T. R.; Trench, A. B.; Silva, A. D.; Teodoro, V.; Vieira, P. C.; Martins, T. A.; Longo, E. Enhanced photocatalytic and antifungal activity of hydroxyapatite/α-AgVO3 composites. Mater. Chem. Phys. 2020, 252, 123294. https://doi.org/10.1016/j.matchemphys.2020.123294

Spurr, R. A.; Myers, H. Quantitative analysis of anatase-rutile mixtures with an x-ray diffractometer. Anal. Chem. 1957, 29 (5), 760–762. https://doi.org/10.1021/ac60125a006

Swamy, V.; Muddle, B. C. Size-dependent modifications of the Raman spectrum of rutile TiO2. Appl. Phys. Lett. 2006, 89, 163118. https://doi.org/10.1063/1.2364123

Tello, A. C. M.; Assis, M.; Menasce, R.; Gouveia, A. F.; Teodoro, V.; Jacomaci, N.; Zaghete, M. A.; Andrés, J.; Marques, G. E.; Teodoro, M. D.; Silva, A. B. F.; Bettini, J.; Longo, E. Microwave-driven hexagonal-to-monoclinic transition in BiPO4: An in-depth experimental investigation and first-principles study. Inorg Chem. 2020, 59 (11), 7453–7468. https://doi.org/10.1021/acs.inorgchem.0c00181

Vargas Hernández, J.; Coste, S.; García Murillo, A.; Carrillo Romo, F.; Kassiba, A. Effects of metal doping (Cu, Ag, Eu) on the electronic and optical behavior of nanostructured TiO2. J. Alloys Compd. 2017, 710, 355–363. https://doi.org/10.1016/j.jallcom.2017.03.275

Wang, H.; Li, Y.; Ba, X.; Huang, L.; Yu, Y. TiO2 thin films with rutile phase prepared by DC magnetron co-sputtering at room temperature: Effect of Cu incorporation. Appl. Surf. Sci. 2015, 345, 49–56. https://doi.org/10.1016/j.apsusc.2015.03.106

Wang, Q.; Jin, R.; Zhang, M.; Gao, S. Solvothermal preparation of Fe-doped TiO2 nanotube arrays for enhancement in visible light induced photoelectrochemical performance. J. Alloys Compd. 2017, 690, 139–144. https://doi.org/10.1016/j.jallcom.2016.07.281

Wang, S.; Meng, K. K.; Zhao, L.; Jiang, Q.; Lian, J. S. Superhydrophilic Cu-doped TiO2 thin film for solar-driven photocatalysis. Ceram. Int. 2014, 40 (4), 5107–5110. https://doi.org/10.1016/j.ceramint.2013.09.028

Xiao, J.; Xie, Y.; Cao, H.; Nawaz, F.; Zhang, S.; Wang, Y. Disparate roles of doped metal ions in promoting surface oxidation of TiO2 photocatalysis. J. Photochem. Photobiol. A Chem. 2016, 315, 59–66. https://doi.org/10.1016/j.jphotochem.2015.09.013

Zhang, L.; Guo, J.; Huang, X.; Zhang, Y.; Han, Y. The dual function of Cu-doped TiO2 coatings on titanium for application in percutaneous implants. J. Mater. Chem. B 2016, 4 (21), 3788–3800. https://doi.org/10.1039/C6TB00563B

Zhang, L.; Li, Y.; Zhang, Q.; Wang, H. Well-dispersed Pt nanocrystals on the heterostructured TiO2/SnO2 nanofibers and the enhanced photocatalytic properties. Appl. Surf. Sci. 2014, 319, 21–28. https://doi.org/10.1016/j.apsusc.2014.07.199

Zhang, Y.; Meng, Y.; Zhu, K.; Qiu, H.; Ju, Y.; Gao, Y.; Du, F.; Zou, B.; Chen, G.; Wei, Y. Copper-doped titanium dioxide bronze nanowires with superior high rate capability for lithium ion batteries. Appl. Mater. Interfaces 2016, 8 (12), 7957–7965. https://doi.org/10.1021/acsami.5b10766

Zhu, S.-C.; Xie, S.-H.; Liu, Z-P. Nature of rutile nuclei in anatase-to-rutile phase transition. J. Am. Chem. Soc. 2015, 137 (35),11532–11539. https://doi.org/10.1021/jacs.5b07734