Performance and stability of femtosecond laser-irradiated Fe2O3 materials as photocatalysts for methylene blue dye discoloration

Main Article Content

Josiane Carneiro Souza
Tiago Almeida Martins
Regiane Cristina de Oliveira
Julio Ricardo Sambrano
Cleber Renato Mendonça
Leonardo de Boni
Edson Roberto Leite
Elson Longo

Abstract

The disposal of substances pollutant, such as methylene blue dye (MB), into wastewater, arouses the interest of technologies to remove these pollutants. The discoloration of MB by photocatalysis and using femtosecond laser-irradiated Fe2O3 materials as photocatalysts proved to be a promising way to treat this pollutant. Here, Fe2O3 obtained by the conventional hydrothermal process and heat-treatment, subsequently femtosecond laser-irradiated treatment. Materials obtained with a mixture of irradiated α-Fe2O3 and ε-Fe2O3 phases revealed lower crystallinity than irradiated α-Fe2O3 samples. The irradiation treatment and the increase in crystallinity were crucial to improve the performance of α-Fe2O3 irradiated sample in the discoloration of MB, which reached 90% in 75 min of dye solution exposure under UV irradiation. The irradiation treatment proved to allow greater exposure of the particle surfaces, which coalesced and presented a greater distribution of medium size, indicating a more heterogeneous morphology in the irradiated samples. As a result, there was an increase in active sites due to the density of defects generated, which facilitated the dye degradation process.

Metrics

Metrics Loading ...

Article Details

How to Cite
Souza, J. C., Martins, T. A., de Oliveira, R. C., Sambrano, J. R., Mendonça, C. R., de Boni, L., Leite, E. R., & Longo, E. (2022). Performance and stability of femtosecond laser-irradiated Fe2O3 materials as photocatalysts for methylene blue dye discoloration. Eclética Química, 47(1SI), 105–119. https://doi.org/10.26850/1678-4618eqj.v47.1SI.2022.p105-119
Section
Original articles

Funding data

References

Ahmed, M. A.; El-Katori, E. E.; Gharni, Z. H. Photocatalytic degradation of methylene blue dye using Fe2O3/TiO2 nanoparticles prepared by sol–gel method. J. Alloys Compd. 2013, 553, 19–29. https://doi.org/10.1016/j.jallcom.2012.10.038

Allawi, F.; Juda, A. M.; Radhi, S. W. Photocatalytic degradation of methylene blue over MgO/α-Fe2O3 nano composite prepared by a hydrothermal method. AIP Conf. Proc. 2020, 2290 (1), 030020. https://doi.org/10.1063/5.0029461

Al-Rubayee, W. T.; Abdul-Rasheed, O. F.; Ali, N. M. Preparation of a Modified Nanoalumina Sorbent for the Removal of Alizarin Yellow R and Methylene Blue Dyes from Aqueous Solutions. J. Chem. 2016, 2016, 4683859. https://doi.org/10.1155/2016/4683859

Anastasiou, A. D.; Thomson, C. L.; Hussain, S. A.; Edwards, T. J.; Strafford, S.; Malinowski, M.; Mathieson, R.; Brown, C. T. A.; Brown, A. P.; Duggal, M. S.; Jha, A. Sintering of Calcium Phosphates with a Femtosecond Pulsed Laser for Hard Tissue Engineering. Mater. Des. 2016, 101, 346–354. https://doi.org/10.1016/j.matdes.2016.03.159

Assis, M.; Ribeiro, R. A. P.; Carvalho, M. H.; Teixeira, M. M.; Gobato, Y. G.; Prando, G. A.; Mendonça. C. R.; Boni, L.; Oliveira, J. A. de; Bettini, J.; Andrés, J.; Longo, E. Unconventional Magnetization Generated from Electron Beam and Femtosecond Irradiation on α-Ag2WO4: A Quantum Chemical Investigation. ACS Omega. 2020, 5, 10052–10067. https://doi.org/10.1021/acsomega.0c00542

Blake, R. L.; Hessevick, R. E.; Zoltai, T.; Finger, L. W. Refinement of the hematite structure. Am. Mineral. 1966, 51 (1–2), 123–129.

Carneiro, J.; Tobaldi, D. M.; Hajjaji, W.; Capela, M. N.; Novais, R. M.; Seabra, M. P.; Labrincha, J. A. Red mud as a substitute coloring agent for the hematite pigment. Ceram. Int. 2018, 44 (4), 4211–4219. https://doi.org/10.1016/j.ceramint.2017.11.225

Chen, Z.; Miller, E.; Dinh, H. N. Photoelectrochemical Water Splitting: Standards, Experimental Methods, and Protocols. Springer, 2013. https://doi.org/10.1007/978-1-4614-8298-7

Crini, G. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog. Polym. Sci. 2005, 30 (1), 38–70. https://doi.org/10.1016/j.progpolymsci.2004.11.002

Danno, T.; Nakatsuka, D.; Kusano, Y.; Asaoka, H.; Nakanishi, M.; Fujii, T.; Ikeda, Y.; Takada, J. Crystal Structure of β-Fe2O3 and Topotactic Phase Transformation to α-Fe2O3. Cryst. Growth Des. 2013, 13 (2), 770–774. https://doi.org/10.1021/cg301493a

Darezereshki, E. One-step synthesis of hematite (α-Fe2O3) nano-particles by direct thermal-decomposition of maghemite. Mater. Lett. 2011, 65 (4), 642–645. https://doi.org/10.1016/j.matlet.2010.11.030

Dézsi, I.; Coey, J. M. D. Magnetic and thermal properties of ϵ-Fe2O3. Phys. Status Solidi. 1973, 15 (2), 681–685. https://doi.org/10.1002/pssa.2210150239

Ding, Y.; Morber, J. R.; Snyder, R. L.; Wang, Z. L. Nanowire Structural Evolution from Fe3O4 to ϵ-Fe2O3. Adv. Funct. Mater. 2007, 17 (7), 1172–1178. https://doi.org/10.1002/adfm.200601024

Faria, D. L. A. de; Silva, S. V.; Oliveira, M. T. de. Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 1997, 28 (11), 873–878. https://doi.org/10.1002/(SICI)1097-4555(199711)28:11<873::AID-JRS177>3.0.CO;2-B

Forestier, H.; Guiot-Guillain, G. Ferromagnetic Variety of Fe2O3. C. R. Acad. Sci. 1934, 199, 720.

Gialanella, S.; Girardi, F.; Ischia, G.; Lonardelli, I.; Mattarelli, M.; Montagna, M. On the goethite to hematite phase transformation. J. Therm. Anal. Calorim. 2010, 102, 867–873. https://doi.org/10.1007/s10973-010-0756-2

Gich, M.; Roig, A.; Taboada, E.; Molins, E.; Bonafos, C.; Snoeck, E. Stabilization of metastable phases in spatially restricted fields: the case of the Fe2O3 polymorphs. Faraday Discuss. 2007, 136, 345–354. https://doi.org/10.1039/B616097B

Gich, M.; Gazquez, J.; Roig, A.; Crespi, A.; Fontcuberta, J.; Idrobo, J. C.; Pennycook, S. J.; Varela, M.; Skumryev, V.; Varela, M. Epitaxial stabilization of ε-Fe2O3 (00l) thin films on SrTiO3 (111). Appl. Phys. Lett. 2010, 96, 112508. https://doi.org/10.1063/1.3360217

Gonçalves, R. H.; Lima, B. H. R.; Leite, E. R. Magnetite Colloidal Nanocrystals: A Facile Pathway To Prepare Mesoporous Hematite Thin Films for Photoelectrochemical Water Splitting. J. Am. Chem. Soc. 2011, 133 (15), 6012–6019. https://doi.org/10.1021/ja111454f

Gou, X.; Wang, G.; Park, J.; Liu, H.; Yang, J. Monodisperse hematite porous nanospheres: synthesis, characterization, and applications for gas sensors. Nanotechnology. 2008, 19, 125606. https://doi.org/10.1088/0957-4484/19/12/125606

Grasse, E. K.; Torcasio, M. H.; Smith, A. W. Teaching UV–Vis Spectroscopy with a 3D-Printable Smartphone Spectrophotometer. J. Chem. Educ. 2016, 93 (1), 146–151. https://doi.org/10.1021/acs.jchemed.5b00654

Gratzel, M. Photoelectrochemical Cells. Nature. 2001, 414, 338–344. https://doi.org/10.1038/35104607

Gu, X.; Chen, L.; Ju, Z.; Xu, H.; Yang, J.; Qian, Y. Controlled Growth of Porous α-Fe2O3 Branches on β-MnO2 Nanorods for Excellent Performance in Lithium-Ion Batteries. Adv. Funct. Mater. 2013, 23 (32), 4049–4056. https://doi.org/10.1002/adfm.201203779

Guettaï, N.; Amar, H. A. Photocatalytic Oxidation of Methyl Orange in Presence of Titanium Dioxide in Aqueous Suspension. Part II: Kinetics Study. Desalination. 2005, 185 (1–3), 439–448. https://doi.org/10.1016/j.desal.2005.04.049

Huang, Y.; Ding, D.; Zhu, M.; Meng, W.; Huang, Y.; Geng, F.; Li, J.; Lin, J.; Tang, C.; Lei, Z.; Zhang, Z.; Zhi, C. Facile synthesis of α-Fe2O3 nanodisk with superior photocatalytic performance and mechanism insight. Sci. Technol. Adv. Mater. 2015, 16 (1), 014801 (12pp). https://doi.org/10.1088/1468-6996/16/1/014801

Jin, J.; Ohkoshi, S.; Hashimoto, K. Giant Coercive Field of Nanometer- Sized Iron Oxide. Adv. Mater. 2004, 16 (1), 48–51. https://doi.org/10.1002/adma.200305297

Keller, U. Recent Developments in Compact Ultrafast Lasers. Nature. 2003, 424, 831–838. https://doi.org/10.1038/nature01938

Kelm, K.; Mader, W. Synthesis and Structural Analysis of ϵ-Fe2O3. Z. Anorg. Allg. Chem. 2005, 631 (12), 2383–1389. https://doi.org/10.1002/zaac.200500283

Kennedy, J. H.; Frese Junior, K. W. Photooxidation of Water at α ‐ Fe2 O3 Electrodes. J. Electrochem. Soc. 1978, 125, 709–714. https://doi.org/10.1149/1.2131532

Lassoued, A.; Lassoued, M. S.; Dkhil, B.; Gadri, A.; Ammar, S. Synthesis, structural, optical and morphological characterization of hematite through the precipitation method: Effect of varying the nature of the base. J. Mol. Struct. 2017, 1141, 99–106. https://doi.org/10.1016/j.molstruc.2017.03.077

Liong, M.; Lu, J.; Kovochich, M.; Xia, T.; Ruehm, S. G.; Nel, A. E.; Tamanoi, F.; Zink, J. I. Multifunctional Inorganic Nanoparticles for Imaging, Targeting, and Drug Delivery. ACS Nano. 2008, 2 (5), 889–896. https://doi.org/10.1021/nn800072t

Liu, X. Q.; Tao, S. W.; Shen, Y. S. Preparation and characterization of nanocrystalline α-Fe2O3 by a sol-gel process. Sens. Actuators B Chem. 1997, 40 (2–3), 161–165. https://doi.org/10.1016/s0925-4005(97)80256-0

López-Sánchez, J.; Serrano, A.; Del Campo, A.; Abuín, M.; Fuente, O. R. de la; Carmona, N. Sol–Gel Synthesis and Micro-Raman Characterization of ε-Fe2O3 Micro- and Nanoparticles. Chem. Mater. 2016, 28 (2), 511–518. https://doi.org/10.1021/acs.chemmater.5b03566

Machala, L.; Tuček, J.; Zbořil, R. Polymorphous Transformations of Nanometric Iron(III) Oxide: A Review. Chem. Mater. 2011, 23, 3255–3272. https://doi.org/10.1021/cm200397g

Mandriota, G.; Corato, R.; Benedetti, M.; Castro, F. de; Fanizzi, F. P.; Rinaldi, R. Design and Application of Cisplatin-Loaded Magnetic Nanoparticle Clusters for Smart Chemotherapy. ACS Appl. Mater. Interfaces. 2019, 11 (2), 1864–1875. https://doi.org/10.1021/acsami.8b18717

Marean, C. W.; Bar-Matthews, M.; Bernatchez, J.; Fisher, E.; Goldberg, P.; Herries, A. I. R.; Jacobs, Z.; Jerardino, A.; Karkanas, P.; Minichillo, T.; Nilssen, P. J.; Thompson, E.; Watts, I.; Williams, H. M. Early human use of marine resources and pigment in South Africa during the Middle Pleistocene. Nature. 2007, 449, 905–908. https://doi.org/10.1038/nature06204

McClean, R. G.; Schofield, M. A.; Kean, W. F.; Sommer, C. V.; Robertson, D. P.; Toth, D.; Gajdardziska-Josifovska, M. Botanical iron minerals: correlation between nanocrystal structure and modes of biological self-assembly. Eur. J. Mineral. 2001, 13 (6), 1235–1242. https://doi.org/10.1127/0935-1221/2001/0013-1235

Pandey, B. K. Shahi, A. K.; Shah, J.; Kotnala, R. K.; Gopal, R. Optical and magnetic properties of Fe2O3 nanoparticles synthesized by laser ablation/fragmentation technique in different liquid media. Appl. Surf. Sci. 2014, 289, 462–471. https://doi.org/10.1016/j.apsusc.2013.11.009

Papynov, E. K.; Portnyagin, A. S.; Modin, E. B.; Mayorov, V. Y.; Shichalin, O. O.; Golikov, A. P.; Pechnikov, V. S.; Gridasova, E. A.; Tananaev, I. G.; Avramenko, V. A. A complex approach to assessing porous structure of structured ceramics obtained by SPS technique. Mater. Charact. 2018, 145, 294–302. https://doi.org/10.1016/j.matchar.2018.08.044

Petersen, N.; Schembera, N.; Schmidbauer, E.; Vali, H. Magnetization, mössbauer spectroscopy and structural studies of a ferrimagnetic Fe-Oxide formed by heating nontronite in air. Phys. Chem. Miner. 1987, 14 (2), 118–121. https://doi.org/10.1007/BF00308215

Pinatti, I. M.; Gouveia, A. F.; Doñate-Buendía, C.; Mínguez-Vega, G.; Andrés, J.; Longo, E. Femtosecond-Laser-Irradiation-Induced Structural Organization and Crystallinity of Bi2WO6. Sci. Rep. 2020, 10, 4613. https://doi.org/10.1038/s41598-020-61524-y

Pottker, W. E.; Ono, R.; Cobos, M. A.; Hernando, A.; Araujo, J. F. D. F.D; Bruno, A. C. O.; Lourenço, S. A.; Longo, E.; La Porta, F. A. Influence of order-disorder effects on the magnetic and optical properties of NiFe2O4 nanoparticles. Ceram. Int. 2018, 44 (14), 17290–17297. https://doi.org/10.1016/j.ceramint.2018.06.190

Rietveld, H. M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. https://doi.org/10.1107/S0021889869006558

Sakurai, S.; Jin, J.; Hashimoto, K.; Ohkoshi, S. Reorientation Phenomenon in a Magnetic Phase of ε-Fe2O3 Nanocrystal. J. Phys. Soc. Japan. 2005, 74 (7), 1946–1949. https://doi.org/10.1143/JPSJ.74.1946

Sakurai, S.; Namai, A.; Hashimoto, K.; Ohkoshi, S. First Observation of Phase Transformation of All Four Fe2O3 Phases (γ → ε → β → α-Phase). J. Am. Chem. Soc. 2009, 131 (51), 18299–18303. https://doi.org/10.1021/ja9046069

Sans, J. A.; Monteseguro, V.; Garbarino, G.; Gich, M.; Cerantola, V.; Cuartero, V.; Monte, M.; Irifune, T.; Muñoz, A.; Popescu, C. Stability and nature of the volume collapse of ε-Fe2O3 under extreme conditions. Nat. Commun. 2018, 9, 4554. https://doi.org/10.1038/s41467-018-06966-9

Sarma, S. K.; Mohan, R.; Shukla, A. Structural, opto-electronic and photoelectrochemical properties of tin doped hematite nanoparticles for water splitting. Mater. Sci. Semicond. Process. 2020, 108, 104873. https://doi.org/10.1016/j.mssp.2019.104873

Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012, 9, 671–675. https://doi.org/10.1038/nmeth.2089

Schrader, R.; Büttner, G. Eine neue Eisen(III)-oxidphase: ϵ-Fe2O3. Z. Anorg. Allg. Chem. 1963, 320 (5–6), 220–234. https://doi.org/10.1002/zaac.19633200503

Sepúlveda, M.; Gallardo, F.; Ballester, B.; Cabello, G.; Vidal, E. El Condor mine: Prehispanic production and consumption of hematite pigments in the Atacama Desert, northern Chile. J. Anthropol. Archaeol. 2019, 53, 325–341. https://doi.org/10.1016/j.jaa.2018.04.001

Shabalina, I. G.; Porebskia, P. J.; Minor, W. Refining the macromolecular model – achieving the best agreement with the data from X-ray diffraction experiment. Crystallogr. Rev. 2018, 24 (4), 236–262. https://doi.org/10.1080/0889311X.2018.1521805

Shanenkov, I.; Sivkov, A.; Ivashutenko, A.; Medvedeva, T.; Shchetinin, I. High-energy plasma dynamic synthesis of multiphase iron oxides containing Fe3O4 and ε-Fe2O3 with possibility of controlling their phase composition. J. Alloys Compd. 2019, 774, 637–645. https://doi.org/10.1016/j.jallcom.2018.10.019

Sharma, P.; Kaur, H.; Sharma, M.; Sahore, V. A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste. Environ. Monit. Assess. 2011, 183, 151–195. https://doi.org/10.1007/s10661-011-1914-0

Sheng, C.; Mat Yunus, W. Study of Photobleaching Mechanism in Methylene Blue Sensitized Gelatin Using a Single Beam UV-Vis. Fibre Optics Spectrophotometer. Pertanika J. Sci. Technol. 2005, 13 (1), 23–30.

Sivula, K.; Zboril, R.; Le Formal, F.; Robert, R.; Weidenkaff, A.; Tucek, J.; Frydrych, J.; Grätzel, M. Photoelectrochemical Water Splitting with Mesoporous Hematite Prepared by a Solution-Based Colloidal Approach. J. Am. Chem. Soc. 2010, 132 (21), 7436–7444. https://doi.org/10.1021/ja101564f

Sivula, K.; Le Formal, F.; Grätzel, M. Solar Water Splitting: Progress Using Hematite (α-Fe2O3) Photoelectrodes. ChemSusChem. 2011, 4 (4), 432–449. https://doi.org/10.1002/cssc.201000416

Sugioka, K.; Cheng, Y. Ultrafast lasers—reliable tools for advanced materials processing. Light Sci. Appl. 2014, 3, e149. https://doi.org/10.1038/lsa.2014.30

Tamirat, A. G.; Rick, J.; Dubale, A. A.; Su, W.-N.; Hwang, B.-J. Using hematite for photoelectrochemical water splitting: a review of current progress and challenges. Nanoscale Horiz. 2016, 1 (4), 243–267. https://doi.org/10.1039/C5NH00098J

Trench, A. B.; Machado, T. R.; Gouveia, A. F.; Assis, M.; Trindade, L. G. da; Santos, C.; Perrin, A.; Perrin, C.; Oliva, M.; Andrés, J.; Longo, E. Connecting structural, optical, and electronic properties and photocatalytic activity of Ag3PO4:Mo complemented by DFT calculations. Appl. Catal. B. 2018, 238, 198–211. https://doi.org/10.1016/j.apcatb.2018.07.019

Trindade, L. G. da; Hata, G. Y.; Souza, J. C.; Soares, M. R. S.; Leite, E. R.; Pereira, E. C.; Longo, E.; Mazzo, T. M. Preparation and characterization of hematite nanoparticles-decorated zinc oxide particles (ZnO/Fe2O3) as photoelectrodes for solar cell applications. J. Mater. Sci. 2020, 55, 2923–2936. https://doi.org/10.1007/s10853-019-04135-x

Tronc, E.; Chanéac, C.; Jolivet, J. P. Structural and Magnetic Characterization ofε-Fe2O3. J. Solid State Chem. 1998, 139 (1), 93–104. https://doi.org/10.1006/jssc.1998.7817

Tuček, J.; Machala, L.; Ono, S.; Namai, A.; Yoshikiyo, M.; Imoto, K.; Tokoro, H.; Ohkoshi, S.; Zbořil, R. Zeta-Fe2O3 – A new stable polymorph in iron(III) oxide family. Sci. Rep. 2015, 5, 1–11. https://doi.org/10.1038/srep15091

Vadivel, S.; Vanitha, M.; Muthukrishnaraj, A.; Balasubramanian, N. Graphene oxide–BiOBr composite material as highly efficient photocatalyst for degradation of methylene blue and rhodamine-B dyes. J. Water Process. Eng. 2014, 1, 17–26. https://doi.org/10.1016/j.jwpe.2014.02.003

Von Dreele, R. B.; Larson, A. C. General Structure Analysis System (GSAS). Los Alamos National Lab; 1994, p. 86–748. URL. https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-86-0748_REV (accessed 2022-02-04).

Vu, X. H.; Phuoc, L. H.; Dien, N. D.; Pham, T. T. H.; Thanh, L. D. Photocatalytic Degradation of Methylene Blue (MB) over α-Fe2O3 Nanospindles Prepared by a Hydrothermal Route. J. Electron. Mater. 2019, 48, 2978–2985. https://doi.org/10.1007/s11664-019-07056-2

Wang, T. H.; Lin, C.-A.; Xu, S.; Wang, C.-F.; Chen, C.-W.; Dong, C.-D.; Huang, C. P. Toward concurrent organics removal and potential hydrogen production in wastewater treatment: Photoelectrochemical decolorization of methylene blue over hematite electrode in the presence of Mn(II). Appl. Catal. B. 2019, 244, 140–149. https://doi.org/10.1016/j.apcatb.2018.11.048

Wheeler, D. A.; Wang, G.; Ling, Y.; Li, Y.; Zhang, J. Z. Nanostructured hematite: synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties. Energy Environ. Sci. 2012, 5, 6682–6702. https://doi.org/10.1039/C2EE00001F

Wood, D. L.; Tauc, J. Weak Absorption Tails in Amorphous Semiconductors. Phys. Rev. B. 1972, 5 (8), 3144–3151. https://doi.org/10.1103/PhysRevB.5.3144

Zboril, R.; Mashlan, M.; Petridis, D. Iron(III) Oxides from Thermal Processes Synthesis, Structural and Magnetic Properties, Mössbauer Spectroscopy Characterization, and Applications. Chem. Mater. 2002, 14 (3), 969–982. https://doi.org/10.1021/cm0111074

Zhao, W.; Ma, W.; Chen, C.; Zhao, J.; Shuai, Z. Efficient Degradation of Toxic Organic Pollutants with Ni2O3/TiO2-xBx under Visible Irradiation. J. Am. Chem. Soc. 2004, 126 (15), 4782–4783. https://doi.org/10.1021/ja0396753