Metallo-stannosilicates as inorganic supports to immobilization of lipase from Thermomyces lanuginosus for biodiesel production
Main Article Content
Abstract
This study reports the application of metallo-stannosilicates as potential inorganic solid matrixes for enzymes immobilization and their use as a heterogenous catalysts in enzymatic transesterification reactions for the conversion of triacylglycerides into fatty acid ethyl esters (FAEEs). Several stannosilicates were synthesized and physicochemical characterized by X-ray powder diffraction (XRD), scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDS), Brunauer–Emmett–Teller (BET)-N2 surface area analysis and solid-state magic-angle spinning nuclear magnetic resonance (MAS NMR 29Si and 119Sn nuclei) techniques. The experimental results for enzymes immobilization were promising, especially for a nickel ion-exchanged metallo-stannosilicate, which were able to immobilize 82 ± 6% of Thermomyces lanuginosus lipase and also kept a high enzymatic activity (42 ± 3 U mg–1). Systematic catalytic reactions for conversion of refined palm oil (Elaeis guineensis) using some of these stannosilicates enzymes complexes yielded 63.3 ± 0.7% of FAEEs. It is worth noticing that, when the transesterification reaction was performed with (a) the as-made stannosilicate without enzymes and (b) the equivalent amount of immobilized Thermomyces lanuginosus lipase in its free form, the FAEEs yield sharply decreased to < 5.0% and 6.3 ± 0.3%, respectively. This result is a clear evidence of a synergistic effect among the metallo-stannosilicates and the immobilized enzymes.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
References
Singh, S. P., Singh, D., Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review, Renewable and Sustainable Energy Reviews 14 (1) (2010) 200-216. https://doi.org/10.1016/j.rser.2009.07.017.
Balat, M., Potential alternatives to edible oils for biodiesel production – A review of current work, Energy Conversion and Management 52 (2) (2011) 1479-1492. https://doi.org/10.1016/j.enconman.2010.10.011.
Gui, M. M., Lee, K. T., Bhatia, S., Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock, Energy 33 (11) (2008) 1646-1653. https://doi.org/10.1016/j.energy.2008.06.002.
Mekhilef, S., Siga, S., Saidur, R., A review on palm oil biodiesel as a source of renewable fuel, Renewable and Sustainable Energy Reviews 33 (4) (2011) 1937-1949. https://doi.org/10.1016/j.rser.2010.12.012.
Issariyakul, T., Dalai, A. K., Biodiesel from vegetable oils, Renewable and Sustainable Energy Reviews 31 (2014) 446-471. https://doi.org/10.1016/j.rser.2013.11.001.
Semwal, S., Arora, A. K., Badoni, R. P., Tuli, D. K., Biodiesel production using heterogeneous catalysts, Bioresource Technology 102 (3) (2011) 2151-2161. https://doi.org/10.1016/j.biortech.2010.10.080.
Chouhan, A. P. S., Sarma, A. K., Modern heterogeneous catalysts for biodiesel production: A comprehensive review, Renewable and Sustainable Energy Reviews 15 (9) (2011) 4378-4399. https://doi.org/10.1016/j.rser.2011.07.112.
Sakai, T., Kawashima, A., Koshikawa, T., Economic assessment of batch biodiesel production processes using homogeneous and heterogeneous alkali catalysts, Bioresource Technology 100 (13) (2009) 3268-3276. https://doi.org/10.1016/j.biortech.2009.02.010.
Lam, M. K., Lee, K. T., Mohamed, A. R., Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review, Biotechnology Advances 28 (4) (2010) 500-518. https://doi.org/10.1016/j.biotechadv.2010.03.002.
Dossin, T. F., Reyniers, M.-F., Berger, R. J., Marin, G. B., Simulation of heterogeneously MgO-catalyzed transesterification for fine-chemical and biodiesel industrial production, Applied Catalysis B: Environmental 67 (1-2) (2006) 136-148. https://doi.org/10.1016/j.apcatb.2006.04.008.
Corcoran, E. W., Vaughan, D. E. W., Eberly Junior, P. E., Efird, K. D., Substituted stannosilicates, their preparation and use as natural gas purification agents (C-2668), US 5 264 193 A, 1993. https://patents.google.com/patent/US5264193A/en.
Janiszewska, E., Kowalak, S., Supronowicz, W., Roessner, F., Synthesis and properties of stannosilicates, Microporous and Mesoporous Materials 117 (1-2) (2009) 423-430. https://doi.org/10.1016/j.micromeso.2008.07.032.
Li, P., Liu, G., Wu, H., Liu, Y., Jiang, J.-G., Wu, P., Postsynthesis and Selective Oxidation Properties of Nanosized Sn-Beta Zeolite, The Journal Physical Chemistry C 115 (9) (2011) 3663-3670. https://doi.org/10.1021/jp1076966.
Moliner, M., Román-Leshkov, Y., Davis, M. E., Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water, Proceedings of the National Academy of Sciences of the United States of America 107 (14) (2010) 6164-6168. https://doi.org/10.1073/pnas.1002358107.
Román-Leshkov, Y., Moliner, M., Labinger, J. A., Davis, M. E., Mechanism of Glucose Isomerization Using a Solid Lewis Acid Catalyst in Water, Angewandte Chemie International Edition 49 (47) (2010) 8954-8957. https://doi.org/10.1002/anie.201004689.
da Silva, D. A., Santisteban, O. A. N., de Vasconcellos, A., Paula, A. S., Aranda, D. A. G., Giotto, M. V., Jaeger, C., Nery, J. G., Metallo-stannosilicate heterogeneous catalyst for biodiesel production using edible, non-edible and waste oils as feedstock, Journal of Environmental Chemical Engineering 6 (2018) 5488–5497. https://doi.org/10.1016/j.jece.2018.08.047.
Abreu, F. R., Lima, D. G., Hamú, E. H., Einloft, S., Rubim, J. C., Suarez, P. A. Z., New metal catalysts for soybean oil transesterification, Journal of the American Oil Chemists' Society 80 (6) (2003) 601-604. https://doi.org/10.1007/s11746-003-0745-6.
Ferreira, D. A. C., Meneghetti, M. R., Meneghetti, S. M. P., Wolf, C. R., Methanolysis of soybean oil in the presence of tin(IV) complexes, Applied Catalysis A: General 317 (1) (2007) 58-61. https://doi.org/10.1016/j.apcata.2006.10.002.
Serra, T. M., de Mendonça, D. R., da Silva, J. P. V., Meneghetti, M. R., Plentz Meneghetti, S. M. P., Comparison of soybean oil and castor oil methanolysis in the presence of tin(IV) complexes, Fuel. 90 (6) (2011) 2203-2206. https://doi.org/10.1016/j.fuel.2011.02.027.
Xie, W., Wang, H., Li, H., Silica-Supported Tin Oxides as Heterogeneous Acid Catalysts for Transesterification of Soybean Oil with Methanol, Industrial & Engineering Chemistry Research 51 (1) (2012) 225-231. https://doi.org/10.1021/ie202262t.
Abreu, F. R., Lima, D. G., Hamú, E. H., Wolf, C., Suarez, P. A., Utilization of metal complexes as catalysts in the transesterification of Brazilian vegetable oils with different alcohols, Journal of Molecular Catalysis A: Chemical 209 (1-2) (2004) 29-33. https://doi.org/10.1016/j.molcata.2003.08.003.
Casas, A., Ramos, M. J., Rodríguez, J. F., Pérez, Á., Tin compounds as Lewis acid catalysts for esterification and transesterification of acid vegetable oils, Fuel Processing Technology 106 (2013) 321-325. https://doi.org/10.1016/j.fuproc.2012.08.015.
Lam, M. K., Lee, K. T., Mixed methanol–ethanol technology to produce greener biodiesel from waste cooking oil: A breakthrough for SO42−/SnO2–SiO2 catalyst, Fuel Processing Technology 92 (8) (2011) 1639-1645. https://doi.org/10.1016/j.fuproc.2011.04.012.
Lam, M. K., Lee, K. T., Accelerating transesterification reaction with biodiesel as co-solvent: A case study for solid acid sulfated tin oxide catalyst, Fuel 89 (12) (2010) 3866-3870. https://doi.org/10.1016/j.fuel.2010.07.005.
Bajaj, A., Lohan, P., Jha, P. N., Mehrotra, R., Biodiesel production through lipase catalyzed transesterification: An overview, Journal of Molecular Catalysis B: Enzymatic 62 (1) (2010) 9-14. https://doi.org/10.1016/j.molcatb.2009.09.018.
Rosset, I. G., Tavares, M. C. H., Assaf, E. M., Porto, A. L. M., Catalytic ethanolysis of soybean oil with immobilized lipase from Candida antarctica and 1H NMR and GC quantification of the ethyl esters (biodiesel) produced, Applied Catalysis A: General 392 (1-2) (2011) 136-142. https://doi.org/10.1016/j.apcata.2010.10.035.
Ferreira, I. M., Ganzeli, L. de S., Rosset, I. G., Yoshioka, S. A., Porto, A. L. M., Ethylic Biodiesel Production Using Lipase Immobilized in Silk Fibroin-Alginate Spheres by Encapsulation, Catalysis Letters 147 (2017) 269-280. https://doi.org/10.1007/s10562-016-1917-0.
Rosset, I. G., Porto, A. L. M., Catálise Enzimática: Transesterificação do Óleo de Soja e Esterificação do Ácido Oleico via Lipases, Revista Brasileira de Energias Renováveis 4 (2) (2015) 64-78. https://doi.org/10.5380/rber.v4i2.42288.
Rosset, I. G., Cavalheiro, M. C. H. T., Assaf, E. M., Porto, A. L. M., Enzymatic Esterification of Oleic Acid with Aliphatic Alcohols for the Biodiesel Production by Candida antarctica Lipase, Catalysis Letters 143 (2013) 863-872. https://doi.org/10.1007/s10562-013-1044-0.
Rosset, I. G., Assaf, E. M., Porto, A. L. M., Biocatalytic Production of Ethyl Esters (Biodiesel) by Enzymatic Transesterification from Synthetic Triolein, Current Catalysis 2 (1) (2013) 53-61. https://doi.org/10.2174/2211544711302010009.
Antczak, M. S., Kubiak, A., Antczak, T., Bielecki, S., Enzymatic biodiesel synthesis – Key factors affecting efficiency of the process, Renewable Energy 34 (5) (2009) 1185-1194. https://doi.org/10.1016/j.renene.2008.11.013.
Jegannathan, K. R., Abang, S., Poncelet, D., Chan, E. S., Ravindra, P., Production of Biodiesel Using Immobilized Lipase—A Critical Review, Critical Reviews in Biotechnology 28 (4) (2008) 253-264. https://doi.org/10.1080/07388550802428392.
Bergamasco, J., de Araujo, M. V., de Vasconcellos, A., Luizon Filho, R. A., Hatanaka, R. R., Giotto, M. V., Aranda, D. A. G., Nery, J. G., Enzymatic transesterification of soybean oil with ethanol using lipases immobilized on highly crystalline PVA microspheres, Biomass and Bioenergy 59 (2013) 218-233. https://doi.org/10.1016/j.biombioe.2013.09.006.
de Vasconcellos, A., Paula, A. S., Luizon Filho, R. A., Farias, L. A., Gomes, E., Aranda, D. A. G., Nery, J. G., Synergistic effect in the catalytic activity of lipase Rhizomucor miehei immobilized on zeolites for the production of biodiesel, Microporous and Mesoporous Materials 163 (2012) 343-355. https://doi.org/10.1016/j.micromeso.2012.07.043.
de Vasconcellos, A., Laurenti, J. B., Miller, A. H., da Silva, D. A., de Moraes, F. R., Aranda, D. A. G., Nery, J. G., Potential new biocatalysts for biofuel production: The fungal lipases of Thermomyces lanuginosus and Rhizomucor miehei immobilized on zeolitic supports ion exchanged with transition metals, Microporous and Mesoporous Materials 214 (2015) 166-180. https://doi.org/10.1016/j.micromeso.2015.05.007.
de Vasconcellos, A., Miller, A. H., Aranda, D. A. G., Nery, J. G., Biocatalysts based on nanozeolite-enzyme complexes: Effects of alkoxysilane surface functionalization and biofuel production using microalgae lipids feedstock, Colloids and Surfaces B: Biointerfaces 165 (2018) 150-157. https://doi.org/10.1016/j.colsurfb.2018.02.029.
MacArio, A., Giordano, G., Setti, L., Parise, A., Campelo, J. M., Marinas, J. M., Luna, D., Study of lipase immobilization on zeolitic support and transesterification reaction in a solvent free-system, Biocatalysis and Biotransformation 25 (2-4) (2007) 328-335. https://doi.org/10.1080/10242420701444256.
Macario, A., Molimer, M., Diaz, U., Jorda, J. L., Corma, A., Giordano, G., Biodiesel production by immobilized lipase on zeolites and related materials, Studies in Surface Science and Catalysis 174 (Part B) (2008) 1011-1016. https://doi.org/10.1016/S0167-2991(08)80061-4.
Brito, A., Borges, M. E., Otero, N., Zeolite Y as a Heterogeneous Catalyst in Biodiesel Fuel Production from Used Vegetable Oil, Energy & Fuels 21 (6) (2007) 3280-3283. https://doi.org/10.1021/ef700455r.
Costa, L., Brissos, V., Lemos, F., Ribeiro, F. R., Cabral, J. M. S., Enhancing the thermal stability of lipases through mutagenesis and immobilization on zeolites, Bioprocess and Biosystems Engineering 32 (2009) 53-61. https://doi.org/10.1007/s00449-008-0220-x.
Hölker, U., Höfer, M., Lenz, J., Biotechnological advantages of laboratory-scale solid-state fermentation with fungi, Applied Microbiology and Biotechnology 64 (2004) 175-186. https://doi.org/10.1007/s00253-003-1504-3.
Verdugo, C., Luna, D., Posadillo, A., Sancho, E. D., Rodrígues, S., Bautista, F., Luque, R., Marinas, J. M., Romero, A. A., Production of a new second generation biodiesel with a low cost lipase derived from Thermomyces lanuginosus: Optimization by response surface methodology, Catalysis Today 167 (1) (2011) 107-112. https://doi.org/10.1016/j.cattod.2010.12.028.
Du, W., Xu, Y.-Y., Liu, D.-H., Li, Z.-B., Study on acyl migration in immobilized lipozyme TL-catalyzed transesterification of soybean oil for biodiesel production, Journal of Molecular Catalysis B: Enzymatic 37 (1-6) (2005) 68-71. https://doi.org/10.1016/j.molcatb.2005.09.008.
Zhang, W.-W.., Yang, X.-L., Jia, J.-Q., Wang, N., Hu, C.-L., Yu, X.-Q., Surfactant-activated magnetic cross-linked enzyme aggregates (magnetic CLEAs) of Thermomyces lanuginosus lipase for biodiesel production, Journal of Molecular Catalysis B: Enzymatic 115 (2015) 83-89. https://doi.org/10.1016/j.molcatb.2015.02.003.
Corcoran Junior, E. W., Vaughan, D. E. W., Hydrothermal synthesis of mixed octahedral-tetrahedral oxides: Synthesis and characterization of sodium stannosilicates, Solid State Ionics 32-33 (Part 1) (1989) 423-429. https://doi.org/10.1016/0167-2738(89)90250-6.
Corcoran Junior, E. W., Vaughan, D. E. W., Eberly, P. E., Stannosilicates and preparation thereof (C-2417), US 5 110 571A, 1992. https://patents.google.com/patent/US5110571A/en.
Brunauer, S., Emmett, P. H., Teller, E., Adsorption of Gases in Multimolecular Layers, Journal of the American Chemical Society 60 (2) (1938) 309-319. https://doi.org/10.1021/ja01269a023.
Cossement, C., Darville, J., Gilles, J.-M., Nagy, J. B., Fernandez, C., Amoureux, J.-P., Chemical shift anisotropy and indirect coupling in SnO2 and SnO, Magnetic Resonance in Chemistry 30 (3) (1992) 263-270. https://doi.org/10.1002/mrc.1260300313.
Alkan, M., Demirbaş, Ö., Doğan, M., Electrokinetic properties of sepiolite suspensions in different electrolyte media, Journal of Colloid and Interface Science 281 (1) (2005) 240-248. https://doi.org/10.1016/j.jcis.2004.08.036.
Hu, Y.-Y., Zhang, Y.-H., Ren, N., Tang, Y., Crystal Plane- and Size-Dependent Protein Adsorption on Nanozeolite, The Journal of Physical Chemistry C 113 (42) (2009) 18040-18046. https://doi.org/10.1021/jp903989p.
Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry 72 (1-2) (1976) 248-254. https://doi.org/10.1016/0003-2697(76)90527-3.
Ghiaci, M., Aghaei, H., Soleimanian, S., Sedaghat, M. E., Enzyme immobilization: Part 1. Modified bentonite as a new and efficient support for immobilization of Candida rugosa lipase, Applied Clay Science 43 (3-4) (2009) 289-295. https://doi.org/10.1016/j.clay.2008.09.008.
Gupta, P., Upadhyay, L. S. B., Shrivastava, R., Lipase Catalyzed-transesterification of Vegetable Oils by Lipolytic Bacteria, Research Journal of Microbiology 6 (3) (2011) 281-288. https://doi.org/10.3923/jm.2011.281.288.
Ferreira, A., Lin, Z., Rocha, J., Morais, C. M., Lopes, M., Fernandez, C., Ab Initio Structure Determination of a Small-Pore Framework Sodium Stannosilicate, Inorganic Chemistry 40 (14) (2001) 3330-3335. https://doi.org/10.1021/ic0012571.
da Silva, D. A., Greiser, S., Contro, J., Medeiros, V. L., Nery, J. G., Jaeger, C., 1H, 29Si and 119Sn double and triple resonance NMR spectroscopy of the small-pore framework sodium stannosilicate Na2SnSi3O9·2H2O, Solid State Nuclear Magnetic Resonance 107 (2020) 101661. https://doi.org/10.1016/j.ssnmr.2020.101661.
Klinowski, J., Recent Advances in Solid-State NMR of Zeolites, Annual Review of Materials Science 18 (1988) 189-218. https://doi.org/10.1146/annurev.ms.18.080188.001201.
Fyfe, C. A., Feng, Y., Gondey, H., Kokotailo, G. T., Gies, H., One- and two-dimensional high-resolution solid-state NMR studies of zeolite lattice structures, Chemical Reviews 91 (7) (1991) 1525-1543. https://doi.org/10.1021/cr00007a013.
Mal, N. K., Bhaumik, A., Kumar, R., Ramaswamy, A. V., Sn-ZSM-12, a new, large pore MTW type tin-silicate molecular sieve: synthesis, characterization and catalytic properties in oxidation reactions, Catalysis Letters 33 (1995) 387-394. https://doi.org/10.1007/BF00814240.
Cruz, M., Morales, J., Espinos, J. P., Sanz, J., XRD, XPS and 119Sn NMR study of tin sulfides obtained by using chemical vapor transport methods, Journal of Solid State Chemistry 175 (2) (2003) 359-365. https://doi.org/10.1016/S0022-4596(03)00329-3.
Song, K. C., Kang, Y., Preparation of high surface area tin oxide powders by a homogeneous precipitation method, Materials Letters 42 (5) (2000) 283-289. https://doi.org/10.1016/S0167-577X(99)00199-8.
Leite, E. R., Weber, I. T., Longo, E., Varela, J. A., A New Method to Control Particle Size and Particle Size Distribution of SnO2 Nanoparticles for Gas Sensor Applications, Advanced Materials 12 (13) (2000) 965-968. https://doi.org/10.1002/1521-4095(200006)12:13%3C965:AID-ADMA965%3E3.0.CO;2-7.
Song, K. C., Kim, J. H., Synthesis of high surface area tin oxide powders via water-in-oil microemulsions, Powder Technology 107 (3) (2000) 268-272. https://doi.org/10.1016/S0032-5910(99)00255-7.