Production and biochemical characterization of xylanases synthesized by the thermophilic fungus Rasamsonia emersonii S10 by solid-state cultivation
Main Article Content
Abstract
The xylanolytic enzyme complex hydrolyzes xylan, and these enzymes have various industrial applications. The goal of this work was to characterize the endoxylanases produced by the thermophilic fungus Rasamsonia emersonii in solid-state cultivation. Tests were carried out to evaluate the effects of pH, temperature, glycerol and phenolic compounds on enzyme activity. Thermal denaturation of one isolated enzyme was evaluated. The crude extract from R. emersonii was applied to breakdown pretreated sugarcane bagasse, by quantifying the release of xylose and glucose. The optimum pH value for the crude enzymatic extract was 5.5, and 80 °C was the optimum temperature. Regarding the stability of the crude extract, the highest values occurred between the pH ranges from 4 to 5.5. Several phenolic compounds were tested, showing an increase in enzymatic activity on the crude extract, except for tannic acid. Zymography displayed four corresponding endoxylanase bands, which were isolated by extraction from a polyacrylamide gel. The thermodynamic parameters of isolated Xylanase C were evaluated, showing a half-life greater than 6 h at 80 °C (optimum temperature), in addition to high melting temperature (93.3 °C) and structural resistance to thermal denaturation. Pretreated sugarcane bagasse breakdown by the crude enzymatic extract from R. emersonii has good hemicellulose conversion to xylose.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
References
Abas, N., Kalair, A., Khan, N., Review of fossil fuels and future energy technologies, Futures 69 (2015) 31-49. https://doi.org/10.1016/j.futures.2015.03.003.
Uihlein, A., Schebek, L., Environmental impacts of a lignocellulose feedstock biorefinery system: An assessment, Biomass and Bioenergy 33 (5) (2009) 793-802. https://doi.org/10.1016/j.biombioe.2008.12.001.
Brenelli, L. B., Figueiredo, F. L., Damasio, A., Franco, T. T., Rabelo, S. C., An integrated approach to obtain xylo-oligosaccharides from sugarcane straw: From lab to pilot scale, Bioresource Technology 313 (2020) 123637. https://doi.org/10.1016/j.biortech.2020.123637.
Sarkar, N., Ghosh, S. K., Bannerjee, S., Aikat, K., Bioethanol production from agricultural wastes: An overview, Renewable Energy 37 (1) (2012) 19-27. https://doi.org/10.1016/j.renene.2011.06.045.
Jeffries, T. W., Biodegradation of lignin-carbohydrate complexes, In: Physiology of Biodegradative Microorganisms, Ratledge, C., ed., Springer: Dordrecht, Netherlands, 1991. https://doi.org/10.1007/978-94-011-3452-1_7.
Lin, S. Y., Accessibility of cellulose: a critical review, Fibre Science and Technology 5 (4) (1972) 303-314. https://doi.org/10.1016/0015-0568(72)90022-X.
Haltrich, D., Nidetzky, B., Kulbe, K. D., Steiner, W., Župančič, S., Production of fungal xylanases, Bioresource Technology 58 (2) (1996) 137-161. https://doi.org/10.1016/S0960-8524(96)00094-6.
Bastawde, K. B., Xylan structure, microbial xylanases, and their mode of action, World Journal of Microbiology and Biotechnology 8 (1992) 353-368. https://doi.org/10.1007/BF01198746.
Kulkarni, N., Shendye, A., Rao, M., Molecular and biotechnological aspects of xylanases, FEMS Microbiology Reviews 23 (4) (1999) 411-456. https://doi.org/10.1111/j.1574-6976.1999.tb00407.x.
Andlar, M., Rezić, T., Marđetko, N., Kracher, D., Ludwig, R., Šantek, B., Lignocellulose degradation: An overview of fungi and fungal enzymes involved in lignocellulose degradation, Engineering in Life Sciences 18 (11) (2018) 768-778. https://doi.org/10.1002/elsc.201800039.
Niehaus, F., Bertoldo, C., Kähler, M., Antranikian, G., Extremophiles as a source of novel enzymes for industrial application, Applied Microbiology and Biotechnology 51 (1999) 711-729. https://doi.org/10.1007/s002530051456.
Subramaniyan, S., Prema, P., Biotechnology of Microbial Xylanases: Enzymology, Molecular Biology, and Application, Critical Reviews in Biotechnology 22 (1) (2002) 33-64. https://doi.org/10.1080/07388550290789450.
Lima, V. M. G., Krieger, N., Sarquis, M. I. M., Mitchell, D. A., Ramos, L. P., Fontana, J. D., Effect of nitrogen and carbon sources on lipase production by Penicillium aurantiogriseum, Food Technology and Biotechnology 41 (2003) 105-110.
Cui, Y. Q., Van der Lans, R. G. J. M., Luyben, K. C. A. M., Effects of dissolved oxygen tension and mechanical forces on fungal morphology in submerged fermentation, Biotechnology and Bioengineering 57 (4) (2000) 409-419. https://doi.org/10.1002/(SICI)1097-0290(19980220)57:4%3C409::AID-BIT4%3E3.0.CO;2-Q.
Raimbault, M., Alazard, D., Culture method to study fungal growth in solid fermentation, European journal of applied microbiology and biotechnology 9 (1980) 199-209. https://doi.org/10.1007/BF00504486.
Hölker, U., Höfer, M., Lenz, J., Biotechnological advantages of laboratory-scale solid-state fermentation with fungi, Applied Microbiology and Biotechnology volume 64 (2004) 175-186. https://doi.org/10.1007/s00253-003-1504-3.
Bhat, M. K., Hazlewood, G. P., Enzymology and other characteristics of cellulases and xylanases, In: Enzym Farm Animal Nutrition, Bedford, M. R., Partridge, G. G., CABI Publishing: Oxfordshire, England, 2001, Ch. 11.
Sun Y, Cheng J., Hydrolysis of Lignocellulosic Materials for Ethanol Production: A Review, ChemInform 34 (1) (2003). https://doi.org/10.1002/chin.200301272.
Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., Ladisch, M., Features of promising technologies for pretreatment of lignocellulosic biomass, Bioresource Technology 96 (6) (2005) 673-686.
Rosa, I. Z., Isolamento e seleção de fungos filamentosos termofílicos produtores de celulases, xilanases e celobiose desidrogenase com potencial para sacarificação do bagaço de cana-de-açúcar, master thesis, São José do Rio Preto, Universidade Estadual Paulista “Julho de Mesquita Filho” - Unesp, 2014.
Bailey, M. J., Biely, P., Poutanen, K., Interlaboratory testing of methods for assay of xylanase activity, Journal of Biotechnology 23 (3) (1992) 257-270. https://doi.org/10.1016/0168-1656(92)90074-J.
Miller, G. L., Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar, Analytical Chemistry 31 (3) (1959) 426-428. https://doi.org/10.1021/ac60147a030.
Perrone, O. M., Colombari, F. M., Rossi, J. S., Moretti, M. M. S., Bordignon, S. E., Nunes, C. da C. C., Gomes, E., Boscolo, M., da Silva, R., Ozonolysis combined with ultrasound as a pretreatment of sugarcane bagasse: Effect on the enzymatic saccharification and the physical and chemical characteristics of the substrate, Bioresource Technology 218 (2016) 69-76. https://doi.org/10.1016/j.biortech.2016.06.072.
Liao, H., Xu, C., Tan, S., Wei, Z., Ling, N., Yu, G., Raza, W., Zhang, R., Shen, Q., Xu, Y., Production and characterization of acidophilic xylanolytic enzymes from Penicillium oxalicum GZ-2, Bioresource Technology 123 (123) 117-124. https://doi.org/10.1016/j.biortech.2012.07.051.
Polizelli, P. P., Facchini, F. D. A., Cabral, H., Bonilla-Rodriguez, G. O., A New Lipase Isolated from Oleaginous Seeds from Pachira aquatica (Bombacaceae), Applied Biochemistry and Biotechnology 150 (2008) 233-242. https://doi.org/10.1007/s12010-008-8145-z.
Saqib, A. A. N., Farooq, A., Iqbal, M., Hassan, J. U., Hayat, U., Baig, S., A Thermostable Crude Endoglucanase Produced by Aspergillus fumigatus in a Novel Solid State Fermentation Process Using Isolated Free Water, Enzyme Research 2012 (2012) 196853. https://doi.org/10.1155/2012/196853.
Saqib, A. A. N., Hassan, M., Khan, N. F., Baig, S., Thermostability of crude endoglucanase from Aspergillus fumigatus grown under solid state fermentation (SSF) and submerged fermentation (SmF), Process Biochemistry 45 (5) (2010) 641-646. https://doi.org/10.1016/j.procbio.2009.12.011.
Bonfá, E. C., Moretti, M. M. de S., Gomes, E., Bonilla-Rodriguez, G. O., Biochemical characterization of an isolated 50 kDa beta-glucosidase from the thermophilic fungus Myceliophthora thermophila M.7.7, Biocatalysis and Agricultural Biotechnology 13 (2018) 311-318. https://doi.org/10.1016/j.bcab.2018.01.008.
Trindade, L.V., Desagiacomo, C., Polizeli, M. de L. T. de M., Damasio, A. R. de L., Lima, A. M. F., Gomes, E., Bonilla-Rodriguez, O. G., Biochemical Characterization, Thermal Stability, and Partial Sequence of a Novel Exo-Polygalacturonase from the Thermophilic Fungus Rhizomucor pusillus A13.36 Obtained by Submerged Cultivation, BioMed Research International 2016 (2016) 8653583. https://doi.org/10.1155/2016/8653583.
Tuohy, M. G., Coughlan, M. P., Production of thermostable xylan-degrading enzymes by Talaromyces emersonii, Bioresource Technology 39 (2) (1992) 131-137. https://doi.org/10.1016/0960-8524(92)90131-G.
Pordesimo, L. O., Hames, B. R., Sokhansanj, S., Edens, W. C., Variation in corn stover composition and energy content with crop maturity, Biomass and Bioenergy 28 (4) (2055) 366-374. https://doi.org/10.1016/j.biombioe.2004.09.003.
Canilha, L., Rodrigues, R. C. L. B., Antunes, F. A. F., Chandel, A. K., Milessi, T. S. S., Felipe, M. G. A., da Silva, S. S., Bioconversion of Hemicellulose, In: Sustainable Products Sustainable Products, Sustainable Degradation of Lignocellulosic Biomass - Techniques, Applications and Commercialization, Chandel, A. K., da Silva S. S., Eds., IntechOpen: London, England, 2013. https://doi.org/10.5772/53832.
Sun, X., Liu, Z., Qu, Y., Li, X., The Effects of Wheat Bran Composition on the Production of Biomass-Hydrolyzing Enzymes by Penicillium decumbens, Appl Applied Biochemistry and Biotechnology 146 (2008) 119-128. https://doi.org/10.1007/s12010-007-8049-3.
Nath, D., Rao, M., pH dependent conformational and structural changes of xylanase from an alkalophilic thermophilic Bacillus sp (NCIM 59), Enzyme and Microbial Technology 28 (4-5) (2001) 397-403. https://doi.org/10.1016/S0141-0229(00)00359-8.
Bai, W., Zhou, C., Zhao, Y., Wang, Q., Ma, Y., Structural Insight into and Mutational Analysis of Family 11 Xylanases: Implications for Mechanisms of Higher pH Catalytic Adaptation, PLoS One 10 (7) (2015) e0132834. https://doi.org/10.1371/journal.pone.0132834.
Viana, Y. A., Garrote Filho, M. da S., Penha-Silva, N., Estabilização de proteínas por osmólitos, Bioscience Journal 21 (2) (2005) 83-88.
Bhatnagar, B. S., Bogner, R. H., Pikal, M. J., Protein Stability During Freezing: Separation of Stresses and Mechanisms of Protein Stabilization, Pharmaceutical Development and Technology 12 (5) (2007) 505-523. https://doi.org/10.1080/10837450701481157.
Qu, Y., Bolen, C. L., Bolen, D. W., Osmolyte-driven contraction of a random coil protein, Proceedings of the National Academy of Sciences USA 95 (1998) 9268-9273. https://doi.org/10.1073/pnas.95.16.9268.
Boukari, I., O’Donohue, M, Rémond, C., Chabbert, B., Probing a family GH11 endo-β-1,4-xylanase inhibition mechanism by phenolic compounds: Role of functional phenolic groups, Journal of Molecular Catalysis B: Enzymatic 72 (3-4) (2011) 130-138. https://doi.org/10.1016/j.molcatb.2011.05.010.
Haslam, E., Polyphenol–protein interactions, Biochemical Journal 139 (1) (1974) 285-288. https://doi.org/10.1042/bj1390285.
Kim, Y., Ximenes, E., Mosier, N. S., Ladisch, M. R., Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass, Enzyme and Microbial Technology 48 (4-5) (2011) 408-415. https://doi.org/10.1016/j.enzmictec.2011.01.007.
Oliveira, D. M., Hoshino, É. P., Mota, T. R., Marchiosi, R., Ferrarese-Filho, O., dos Santos, W. D., Modulation of cellulase activity by lignin-related compounds, Bioresource Technology Reports 10 (2020) 100390. https://doi.org/10.1016/j.biteb.2020.100390.
Freudenberg, K., Lignin: Its Constitution and Formation from p-Hydroxycinnamyl Alcohols, Science 148 (3670) (1965) 595-600. https://doi.org/10.1126/science.148.3670.595.
Mes-Hartree, M., Saddler, J. N., The nature of inhibitory materials present in pretreated lignocellulosic substrates which inhibit the enzymatic hydrolysis of cellulose, Biotechnology Letters 5 (1983) 531-536. https://doi.org/10.1007/BF01184944.
Ximenes, E., Kim, Y., Mosier, N., Dien, B., Ladisch, M. Inhibition of cellulases by phenols, Enzyme and Microbial Technology 46 (3-4) (2010) 170-176.
Sharma, A., Milstein, O., Vered, Y., Gressel, J., Flowers, H. M., Effects of aromatic compounds on hemicellulose‐degrading enzymes in Aspergillus japonicus, Biotechnology and Bioengineering 1985;27 (8) (1985) 1095-1101. https://doi.org/10.1002/bit.260270802.
Zhao, J., Chen, H., Stimulation of Cellulases by Small Phenolic Compounds in Pretreated Stover, Journal of Agricultural and Food Chemistry 62 (2014) 3223-3229. https://doi.org/10.1021/jf405046m.
Li, H., Wu, H., Xiong, L., Chen, X., Wang, C., Qi, G., Huang, C., Guo, H., Luo, M., Liu, J., Long, M., Chen, X., The hydrolytic efficiency and synergistic action of recombinant xylan-degrading enzymes on xylan isolated from sugarcane bagasse, Carbohydrate Polymers 175 (2017) 199-206. https://doi.org/10.1016/j.carbpol.2017.07.075.
Raheja, Y., Kaur, B., Falco, M., Tsang, A., Chadha, B. S., Secretome analysis of Talaromyces emersonii reveals distinct CAZymes profile and enhanced cellulase production through response surface methodology, Industrial Crops and Products 152 (2020) 112554. https://doi.org/10.1016/j.indcrop.2020.112554.
Marques, N. P., Pereira, J. de C., Gomes E, da Silva, R., Araújo, A. R., Ferreira, H., Rodrigues, A., Dussán, K. J., Bocchini, D. A., Cellulases and xylanases production by endophytic fungi by solid state fermentation using lignocellulosic substrates and enzymatic saccharification of pretreated sugarcane bagasse, Industrial Crops and Products 122 (2018) 66-75. https://doi.org/10.1016/j.indcrop.2018.05.022.
Damaso, M. C. T., Almeida, M. S., Kurtenbach, E., Martins, O. B., Pereira Junior, N., Andrade, C. M. M. C., Albano, R. M., Optimized expression of a thermostable xylanase from Thermomyces lanuginosus in Pichia pastoris, Applied and Environmental Microbiology 69 (10) (2003) 6064-6072. https://doi.org/10.1128/AEM.69.10.6064-6072.2003.
Gottschalk, L. M. F., Oliveira, R. A., Bon, E. P. da S. Cellulases, xylanases, β-glucosidase and ferulic acid esterase produced by Trichoderma and Aspergillus act synergistically in the hydrolysis of sugarcane bagasse. Biochemical Engineering Journal 51 (1-2) (2010) 72-78. https://doi.org/10.1016/j.bej.2010.05.003.
Zhao, X., Song, Y., Liu, D., Enzymatic hydrolysis and simultaneous saccharification and fermentation of alkali/peracetic acid-pretreated sugarcane bagasse for ethanol and 2,3-butanediol production, Enzyme and Microbial Technology 49 (4) (2011) 413-419. https://doi.org/10.1016/j.enzmictec.2011.07.003.
Pollet, A., Delcour, J. A., Courtin, C. M., Structural determinants of the substrate specificities of xylanases from different glycoside hydrolase families, Critical Reviews in Biotechnology 30 (3) (2010) 176-191. https://doi.org/10.3109/07388551003645599.
Montes, F. J., Battaner, E., Catalán, J., Galán M., Kinetics and Heat-inactivation mechanisms of d-amino acid oxidase, Process Biochemistry 30 (3) (1995) 217-224. https://doi.org/10.1016/0032-9592(95)85002-3.
Rashid, M. H., Siddiqui, K. S., Thermodynamic and kinetic study of stability of the native and chemically modified β-glucosidases from Aspergillus niger, Process Biochemistry 33 (2) (1998) 109-115. https://doi.org/10.1016/S0032-9592(97)00036-8.
Wahab M. K. H. A., Jonet M. A., Illias R. M., Thermostability enhancement of xylanase Aspergillus fumigatus RT-1, Journal of Molecular Catalysis B: Enzymatic 2016 134 (Part A) (2016) 154-163. https://doi.org/10.1016/j.molcatb.2016.09.020.
Xiong, K., Hou, J., Jiang, Y., Li, X., Teng, C., Li, Q., Fan, G., Yang, R., Zhang, C., Mutagenesis of N-terminal residues confer thermostability on a Penicillium janthinellum MA21601 xylanase, BMC Biotechnology 19 (2019) 51. https://doi.org/10.1186/s12896-019-0541-7.
Bokhari, S. A. I., Latif, F., Rajoka, M. I., Purification and characterization of xylanases from Thermomyces lanuginosus and its mutant derivative possessing novel kinetic and thermodynamic properties, World Journal of Microbiology and Biotechnology 25 (2009) 493-502. https://doi.org/10.1007/s11274-008-9915-z.
Gupta, G., Sahai, V., Gupta, R. K., Thermal stability and thermodynamics of xylanase from Melanocarpus albomyces in presence of polyols and salts, BioResources 9 (4) (2014) 5801-5816. https://doi.org/10.15376/biores.9.4.5801-5816.
Lumry, R., Eyring, H., Conformation Changes of Proteins, The Journal of Physical Chemistry 58 (2) (1954) 110-120. https://doi.org/10.1021/j150512a005.