Dengue fusion peptides in interaction with model membranes – a fluorescence study
Main Article Content
Abstract
Dengue fever is a widespread infectious disease caused by Dengue viruses and responsible for millions of cases per year. One of the key steps during the infection is the fusion between the cell membrane and the lipidic bilayer of the virus, done by the glycoprotein envelope. At the tip of the envelope there is a fusion peptide widely conserved among the four known virus serotypes. Here dengue fusion peptides were studied in buffer solution and interacting with model membranes using fluorescence techniques. Peptides have the tryptophan residue exposed to aqueous environment when in buffer, while is exposed to a hydrophobic environment when interacting with negatively charged vesicles, as shown by the blue shift of fluorescence emission and increase in the lifetime decay. Fluorescence anisotropy results confirm that the residue is in a more restrictive environment when interacting with vesicles. Finally, fluorescence correlation spectroscopy results support the importance of electrostatic interaction, showing that dengue peptide promotes a significant increase in diameter of negatively charged vesicles, compared to the absence of effect in the size of neutral vesicles.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
References
Bhatt, S., Gething, P. W., Brady, O. J., Messina, J. P., Farlow, A. W., Moyes, C. L., Drake, J. M., Brownstein, J. S., Hoen, A. G., Sankoh, O., Myers, M. F., George, D. B., Jaenisch, T., Wint, G. R. W., Simmons, C. P., Scott, T. W., Farrar, J. J., Hay, S. I., The global distribution and burden of dengue, Nature 496 (2013) 504-507. https://doi.org/10.1038/nature12060.
Barrows, N. J., Campos, R. K., Liao, K.-C., Prasanth, K. R., Soto-Acosta, R., Yeh, S.-C., Geraldine Schott-Lerner, G., Pompon, J., Sessions, O. M., Bradrick, S. S., Garcia-Blanco, M. A., Biochemistry and Molecular Biology of Flaviviruses, Chemical Reviews 118 (8) (2018) 4448-4482. https://doi.org/10.1021/acs.chemrev.7b00719.
Modis, Y., Ogata, S., Clements, D., Harrison, S. C., Structure of the dengue virus envelope protein after membrane fusion, Nature 427 (2004) 313-319. https://doi.org/10.1038/nature02165.
Zonetti, L. F. C., Coutinho, M. C., Araujo, A. S. de, Molecular Aspects of the Dengue Virus Infection Process: A Review, Protein & Peptide Letters 25 (8) (2018) 712-719. https://doi.org/10.2174/0929866525666180709115506.
Smit, J. M., Moesker, B., Rodenhuis-Zybert, I., Wilschut, J., Flavivirus Cell Entry and Membrane Fusion, Viruses 3 (2) (2011) 160-171. https://doi.org/10.3390/v3020160.
Rice, C. M., Linderbach, B. D., Theil, H., Flaviviridae: the viruses and their replication, In: Fields Virology 5th edition., Knipe, D. M., Howley PM, ed., Lippincott-Raven, Philadelphia, 2007, Ch. 33.
Harrison, S. C., The pH sensor for flavivirus membrane fusion, Journal of Cell Biology 183 (2) (2008) 177-179. https://doi.org/10.1083/jcb.200809175.
Hrobowski, Y. M., Garry, R. F., Michael, S. F., Peptide inhibitors of dengue virus and West Nile virus infectivity, Virology Journal 2 (2005) 49. https://doi.org/10.1186/1743-422X-2-49.
Seligman, S. J., Constancy and diversity in the flavivirus fusion peptide, Virology Journal 5 (2008) 27. https://doi.org/10.1186/1743-422X-5-27.
Stauffer, F., Melo, M. N., Carneiro, F. A., Sousa, F. J. R., Juliano, M. A., Juliano, L., Mohana-Borges, R., Poian, A. T. da, Castanho, M. A. R. B., Interaction between dengue virus fusion peptide and lipid bilayers depends on peptide clustering, Molecular Membrane Biology 25 (2) (2008) 128-138. https://doi.org/10.1080/09687680701633091.
Melo, M. N., Sousa, F. J. R., Carneiro, F. A., Castanho, M. A. R. B., Valente, A. P., Almeida, F. C. L., Poian, A. T. da, Mohana-Borges, R., Interaction of the Dengue Virus Fusion Peptide with Membranes Assessed by NMR: The Essential Role of the Envelope Protein Trp101 for Membrane Fusion, Journal of Molecular Biology 392 (3) (2009) 736-746. https://doi.org/10.1016/j.jmb.2009.07.035.
Carpio, L. E., Villalaín, J., Identification of the phospholipid binding regions of the envelope E protein of flaviviruses by molecular dynamics, Journal of Biomolecular Structure and Dynamics 38 (17) (2020) 5136-5147. https://doi.org/10.1080/07391102.2019.1697368.
Fields, G. B., Noble, R. L., Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids, International Journal of Peptide and Protein Research 35 (3) (2009) 161-214. https://doi.org/10.1111/j.1399-3011.1990.tb00939.x.
Ito, A. S., Rodrigues, A. P., Pazin, W. M., Barioni, M. B., Fluorescence depolarization analysis of thermal phase transition in DPPC and DMPG aqueous dispersions, Journal of Luminescence 158 (2015) 153-159. https://doi.org/10.1016/j.jlumin.2014.09.051.
Ristori, S., Di Cola, E., Lunghi, C., Richichi, B., Nativi, C., Structural study of liposomes loaded with a GM3 lactone analogue for the targeting of tumor epitopes, Biochimica et Biophysica Acta (BBA) - Biomembranes 1788 (12) (2009) 2518-2525. https://doi.org/10.1016/j.bbamem.2009.10.005.
Cespedes, G. F., Nobre, T. M., Oliveira Junior, O. N., Bong, D., Cilli, E. M., On the role of surrounding regions in the fusion peptide in dengue virus infection, Virology 557 (2021) 62-69. https://doi.org/10.1016/j.virol.2021.02.012.
Goldman, C., Pascutti, P. G., Piquini, P., Ito, A. S., On the contribution of electron transfer reactions to the quenching of tryptophan fluorescence, The Journal of Chemical Physics 103 (24) (1995) 10614-10620. https://doi.org/10.1063/1.469846.
Marquezin, C. A., Hirata, I. Y., Juliano, L., Ito, A. S., Tryptophan as a probe for acid-base equilibria in peptides, Peptide Science 71 (5) (2003) 569-576. https://doi.org/10.1002/bip.10535.
Fernandez, R. M., Vieira, R. F. F., Nakaie, C. R., Lamy, M. T., Ito, A. S., Acid-base titration of melanocortin peptides: Evidence of Trp rotational conformers interconversion, Biopolymers 80 (5) (2005) 643-650. https://doi.org/10.1002/bip.20210.
Romani, A. P., Ito, A. S., Interaction of adrenocorticotropin peptides with microheterogeneous systems — A fluorescence study, Biophysical Chemistry 139 (2-3) (2009) 92-98. https://doi.org/10.1016/j.bpc.2008.10.009.
Zanin, L. M. P., Alvares, D. dos S., Juliano, M. A., Pazin, W. M., Ito, A. S., Ruggiero Neto, J., Interaction of a synthetic antimicrobial peptide with model membrane by fluorescence spectroscopy, European Biophysics Journal 42 (11-12) (2013) 819-831. https://doi.org/10.1007/s00249-013-0930-0.
Souto, A. L. C. F., Ito, A. S., Tryptophan fluorescence studies of melanotropins in the amphiphile-water interface of reversed micelles, European Biophysics Journal 29 (1) (2000) 38-47. https://doi.org/10.1007/s002490050249.
Kawato, S., Kinosita Junior, K., Ikegami, A., Effect of cholesterol on the molecular motion in the hydrocarbon region of lecithin bilayers studied by nanosecond fluorescence techniques, Biochemistry 17 (23) (1978) 5026-5031. https://doi.org/10.1021/bi00616a026.
Wahl, M., Gregor, I., Patting, M., Enderlein, J., Fast calculation of fluorescence correlation data with asynchronous time-correlated single-photon counting, Optics Express 11 (26) (2003) 3583-3591. https://doi.org/10.1364/OE.11.003583.
Krishevsky, O., Bonnet, G., Fluorescence correlation spectroscopy: the technique and its applications, Reports on Progress in Physics 65 (2) (2002) 251-297. https://doi.org/10.1088/0034-4885/65/2/203.