Relaxation parameters of water molecules coordinated with Gd(III) complexes and hybrid materials based on δ-FeOOH (100) nanoparticles: A theoretical study of hyperfine inter-actions for CAs in MRI

Main Article Content

Mateus Aquino Gonçalves
Teodorico Castro Ramalho

Abstract

Cancer is a serious disease that afflicts and worries much of the population, which significantly affects all ages and socio-economic groups and one reason is the great difficulty of the initial diagnostic phase. Thus, magnetic resonance imaging (MRI) is an effective technique for detecting cancer (especially breast cancer), however, for a better visualization of the tissues it is necessary to use the Contrast Agents (CAs), which are paramagnetic compounds capable of increasing the longitudinal and transverse relaxation times (T1 and T2) of water molecules. The CAs are important to increase the rate of relaxation of water protons, the most commonly used CAs are Gd3+ complexes. Thus, in this work we propose two new hybridizing contrast agent, d-FeOOH(100).[Gd(DTPA)(H2O)]2- and δ-FeOOH (100).[Gd(DTPA-BMA)(H2O)], both compounds are capable of increasing both relaxation times T1 and T2. Theoretical results show that the hybrid compound considerably increases the hyperfine coupling constants 1H and 17O of water molecules. In this way, our results show that both hybrid compounds can be used as new contrast agents, thus replacing Gd3+ complexes.

Metrics

Metrics Loading ...

Article Details

How to Cite
Gonçalves, M. A., & Ramalho, T. C. (2020). Relaxation parameters of water molecules coordinated with Gd(III) complexes and hybrid materials based on δ-FeOOH (100) nanoparticles: A theoretical study of hyperfine inter-actions for CAs in MRI. Eclética Química, 45(4), 12–20. https://doi.org/10.26850/1678-4618eqj.v45.4.2020.p12-20
Section
Original articles

References

Merbach, A. E., Helm, L., Tóth, É., The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, 2nd ed., Wiley, New York, 2013. https://doi.org/10.1002/9781118503652.

Sandra, S., Jativa, S. D., Kaittanis, C., Normand, G., Grim, J., Perez, J. M., Gadolinium-Encapsulating Iron Oxide Nanoprobe as Activatable NMR/MRI Contrast Agent, ACS Nano 6 (8) (2012) 7281-7294. https://doi.org/10.1021/nn302393e.

Merbach, A. E., Tóth, É., The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, John Wiley & Sons, Chichester, 2001.

Platas-Iglesias, C., The Solution Structure and Dynamics of MRI Probes Based on Lanthanide(III) DOTA as Investigated by DFT and NMR Spectroscopy, European Journal of Inorganic Chemistry 2012 (12) (2012) 2023-2033. https://doi.org/10.1002/ejic.201101164.

Esteban-Gómez, D., de Blas, A., Rodríguez-Blas, T., Helm, L., Platas-Iglesias, C., Hyperfine Coupling Constants on Inner‐Sphere Water Molecules of GdIII‐Based MRI Contrast Agents, ChemPhysChem 13 (16) (2012) 3640-3650. https://doi.org/10.1002/cphc.201200417.

Caravan, P., Ellinson, J. J., McMurry, T. J., Lauffer R. B., Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications, Chemical Reviews 99 (9) (1999) 2293-2352. https://doi.org/10.1021/cr980440x.

Werner, E. J., Datta, A., Jocher, C. J., Raymond, K. N., High‐Relaxivity MRI Contrast Agents: Where Coordination Chemistry Meets Medical Imaging, Angewandte Chemie International Edition 47 (45) (2008) 8568-8580. https://doi.org/10.1002/anie.200800212.

Schwarz, S., Fernandes, F., Sanroman, L., Hodenius, M., Lang C., Himmelreich, U., Schmitz-Rode, T., Schueler, D., Hoehn, M., Zenke, M., Hieronymus, T., Synthetic and biogenic magnetite nanoparticles for tracking of stem cells and dendritic cells, Journal of Magnetism and Magnetic Materials 321 (10) (2009) 1533-1538. https://doi.org/10.1016/j.jmmm.2009.02.081.

Klug, G., Kampf, T., Bloemer, S., Bremicker, J., Ziener, C. H., Heymer, A., Gbureck, U., Rommel, E., Nöth, U., Schenk, W. A., Jakob, P. M., Bauer, W. R., Intracellular and extracellular T1 and T2 relaxivities of magneto‐optical nanoparticles at experimental high fields, Magnetic Resonance in Medicine 64 (6) (2010) 1607-1615. https://doi.org/10.1002/mrm.22557.

Li Y., Yang Z., Wang B., Liu Z., Li S., Gd-complex labeled magnetite nanoparticles as fluorescent and targeted magnetic resonance imaging contrast agent, Materials Letters 98 (2013) 34-37. https://doi.org/10.1016/j.matlet.2013.01.134.

Davenport, A., Whiting, S., Profound Pseudohypocalcemia Due to Gadolinium (Magnevist) Contrast in a Hemodialysis Patient, American Journal of Kidney Diseases 47 (2) (2006) 350-352. https://doi.org/10.1053/j.ajkd.2005.10.024.

Kartamihardja, A. A. P., Nakajima, T., Kameo, S., Koyama, H., Tsushima, Y., Impact of Impaired Renal Function on Gadolinium Retention After Administration of Gadolinium-Based Contrast Agents in a Mouse Model, Investigative Radiology 51 (10) (2016) 655-660. https://doi.org/10.1097/RLI.0000000000000295.

Bloem, J. L., Wondergem, J., Gd-DTPA as a contrast agent in CT, Radiology 171 (2) (1989) 578-579. https://doi.org/10.1148/radiology.171.2.2704827.

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Goperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J., Fox, D. J., Gaussian 09, Revision B.01. Gaussian Inc., Wallingford, 2010.

Stewart, J. J. P., Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements, Journal of Molecular Modeling 13 (12) (2007) 1173-1213. https://doi.org/10.1007/s00894-007-0233-4.

Mancini, D. T., Souza, E. F., Caetano, M. S., Ramalho, T. C., 99Tc NMR as a promising technique for structural investigation of biomolecules: theoretical studies on the solvent and thermal effects of phenylbenzothiazole complex, Magnetic Resonance in Chemistry 52 (4) (2014) 129-137. https://doi.org/10.1002/mrc.4043.

Adri van Duin, ReaxFF User Manual, 2002.

Helgaker, T., Jaszuński, M., Ruud, K., Ab Initio Methods for the Calculation of NMR Shielding and Indirect Spin−Spin Coupling Constants, Chemical Reviews 99 (1) (1999) 293-352. https://doi.org/10.1021/cr960017t.

Scilab 2.7 GNU Linux, Windows 9X/NT/2000/XP, Solaris 1989-2003 INRIA/ENPC. https://www.scilab.org/.

Coutinho, K., Canuto S., Solvent Effects from a Sequential Monte Carlo - Quantum Mechanical Approach, Advances in Quantum Chemistry 28 (1997) 89-105. https://doi.org/10.1016/S0065-3276(08)60209-9.

Gonçalves, M. A., Peixoto, F. C., da Cunha, E. F. F., Ramalho, T. C., Dynamics, NMR parameters and hyperfine coupling constants of the Fe3O4(1 0 0)–water interface: Implications for MRI probes, Chemical Physics Letters 609 (2014) 88-92. https://doi.org/10.1016/j.cplett.2014.06.030.

Goncalves, A. da S., França, T. C. C., Caetano, M. S., Ramalho, T. C., Reactivation steps by 2-PAM of tabun-inhibited human acetylcholinesterase: reducing the computational cost in hybrid QM/MM methods, Journal of Biomolecular Structure and Dynamics 32 (2) (2014) 301-307. https://doi.org/10.1080/07391102.2013.765361.

Ramalho, T. C., da Cunha, E. F. F., Alencastro, R. B., Solvent effects on 13C and 15N shielding tensors of nitroimidazoles in the condensed phase: a sequential molecular dynamics/quantum mechanics study, Journal of Physics: Condensed Matter 16 (34) (2004) 6159-6170. https://doi.org/10.1088/0953-8984/16/34/015.

Coutinho, K., Canuto, S., Zerner, M. C., A Monte Carlo-quantum mechanics study of the solvatochromic shifts of the lowest transition of benzene, The Journal of Chemical Physics 112 (22) (2000) 9874. https://doi.org/10.1063/1.481624.

Coutinho, K., Georg, H. C., Fonseca, T. L., Ludwig, V., Canuto, S., An efficient statistically converged average configuration for solvent effects, Chemical Physics Letters 437 (1-3) (2007) 148-152. https://doi.org/10.1016/j.cplett.2007.02.012.

Lepage, M., Gore. J. C., Contrast mechanisms in magnetic resonance imaging, Journal of Physics: Conference Series 3 (2004) 78-86. https://doi.org/10.1088/1742-6596/3/1/008.

Yazyev, O. V., Helm, L., Nuclear Spin Relaxation Parameters of MRI Contrast Agents – Insight from Quantum Mechanical Calculations, European Journal of Inorganic Chemistry 2008 (2008) 201-211. https://doi.org/10.1002/ejic.200701013.