Approximate solutions of the Schrödinger equation with energy-dependent screened Coulomb potential in D – dimensions
Main Article Content
Abstract
Within the framework of the conventional Nikiforov-Uvarov method and a new form of Greene-Aldrich approximation scheme, we solved the Schrödinger equation with the energy-dependent screened Coulomb potential. Energy eigenvalues and energy eigenfunctions were obtained both approximately and numerically at different dimensions. The energy variations with different potential parameters, quantum numbers and energy slope parameter, respectively were also discussed graphically. The major finding of this research is the effect of the energy slope parameter on the energy spectra, which is seen in the existence of two simultaneous energy values for a particular quantum state. Our special cases also agree with the results obtained from literature, when the energy slope parameter is zero.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
References
Chun-Feng, H., Zhong-Xiang, Z., Yan, L., Bound states of the Klein-Gordon equation with vector and scalar Wood-Saxon potentials, Acta Physica Sinica (Overseas Edition) 8 (8) (1999) 561. https://doi.org/10.1088/1004-423X/8/8/001.
Sever, R., Tezan, C., Yeşiltaş, Ö., Bucurgat, M., Exact Solution of Effective Mass Schrödinger Equation for the Hulthen Potential, International Journal of Theoretical Physics 49 (9) (2008) 2243-2248. https://doi.org/10.1007/s10773-008-9656-7.
Yahya, W. A., Oyewumi, K. J., Thermodynamic properties and approximate solutions of the ℓ-state Pöschl–Teller-type potential, Journal of the Association of Arab Univ. for Basic and Applied Sciences 21 (1) (2016) 53-58. https://doi.org/10.1016/j.jaubas.2015.04.001.
Sun, Y., He, S., Jia, C.-S., Equivalence of the deformed modified Rosen–Morse potential energy model and the Tietz potential energy model, Physica Scripta 87 (2) (2013) 025301. https://doi.org/10.1088/0031-8949/87/02/025301.
Onate, C. A., Idiodi, J. O. A., Eigensolutions of the Schrödinger Equation with Some Physical Potentials, Chinese Journal of Physics 53 (7) (2015) 120001-1-120001-10. https://doi.org/10.6122/CJP.20150831E.
Antia, A. D., Ikot, A. N., Hassanabadi, H., Maghsoodi, E., Bound state solutions of Klein–Gordon equation with Mobius square plus Yukawa potentials, Indian Journal of Physics 87 (11) (2013) 1133-1139. https://doi.org/10.1007/s12648-013-0336-y.
Ikot, A. N., Awoga, O. A., Hassanabadi, H., Maghsoodi, E., Analytical Approximate Solution of Schrödinger Equation in D Dimensions with Quadratic Exponential-Type Potential for Arbitrary l-State, Communications in Theoretical Physics 61 (4) (2014) 457-463. https://doi.org/10.1088/0253-6102/61/4/09.
Falaye, B. J., Oyewumi, K. J., Abbas, M., Exact solution of Schrödinger equation with q-deformed quantum potentials using Nikiforov—Uvarov method, Chinese Physics B 22 (11) (2013) 110301. https://doi.org/10.1088/1674-1056/22/11/110301.
Ciftci, H., Hall, R. L., Saad, N., Asymptotic iteration method for eigenvalue problems, Journal of Physics A: Mathematical and General 36 (47) (2003) 11807-11816. https://doi.org/10.1088/0305-4470/36/47/008.
Falaye, B. J., Any l -state solutions of the Eckart potential via asymptotic iteration method, Central European Journal Physics 10 (4) (2012) 960-965. https://doi.org/10.2478/s11534-012-0047-6.
Setare, M. R., Karimi, E., Algebraic approach to the Kratzer potential, Physica Scripta 75 (1) (2007) 90-93. https://doi.org/10.1088/0031-8949/75/1/015.
Qiang, W. C., Dong, S. H., Proper quantization rule, Europhysics Letters 89 (1) (2010) 10003. https://doi.org/10.1209/0295-5075/89/10003.
Ikhdair, S. M., Sever, R., Exact quantization rule to the Kratzer-type potentials: an application to the diatomic molecules, Journal of Mathematical Chemistry 45 (4) (2009) 1137. https://doi.org/10.1007/s10910-008-9438-8.
Chen, G., The exact solutions of the Schrödinger equation with the Morse potential via Laplace transforms, Physics Letters A 326 (1-2) (2004) 55-57. https://doi.org/10.1016/j.physleta.2004.04.029.
Onate, C. A., Ojonubah, J. O., Eigensolutions of the Schrödinger equation with a class of Yukawa potentials via supersymmetric approach, Journal of Theoretical and Applied Physics 10 (1) (2016) 21-26. https://doi.org/10.1007/s40094-015-0196-2.
Ikot, A. N., Obong, H. P., Abbey, T. M., Zare, S., Ghafourian, M., Hassanabadi, H., Bound and Scattering State of Position Dependent Mass Klein–Gordon Equation with Hulthen Plus Deformed-Type Hyperbolic Potential, Few-Body Systems 57 (9) (2016) 807-822. https://doi.org/10.1007/s00601-016-1111-3.
Onate, C. A., Onyeaju, M. C., Ikot, A. N., Ojonubah, J. O., Analytical solutions of the Klein-Gordon equation with a Combined potential, Chinese Journal of Physics 54 (5) (2016) 820-829. https://doi.org/10.1016/j.cjph.2016.08.007.
Onate, C. A., Ikot, A. N., Onyeaju, M. C., Udoh M. E., Bound state solutions of D-dimensional Klein–Gordon equation with hyperbolic potential, Karbala International Journal of Modern Science 3 (1) (2017) 1-7. https://doi.org/10.1016/j.kijoms.2016.12.001.
Okorie, U. S., Ibekwe, E. E., Onyeaju, M. C., Ikot, A. N., Solutions of the Dirac and Schrödinger equations with shifted Tietz-Wei potential, The European Physical Journal Plus 133 (10) (2018) 433. https://doi.org/10.1140/epjp/i2018-12307-4.
Okorie, U. S., Ikot, A. N., Edet, C. O., Akpan, I. O., Sever, R., Rampho, G. J., Solutions of the Klein Gordon equation with generalized hyperbolic potential in D-dimensions, Journal of Physics Communications 3 (9) (2019) 095015. https://doi.org/10.1088/2399-6528/ab42c6.
Dong, S.-H., Factorization Method in Quantum Mechanics, Springer, Dordrecht, 2007. https://doi.org/10.1007/978-1-4020-5796-0.
Jia, C.-S., Jia, Y., Relativistic rotation-vibrational energies for the Cs2 molecule, The European Physical Journal D 71 (1) (2017) 3. https://doi.org/10.1140/epjd/e2016-70415-y.
Dong, S., Sun, G.-H., Dong, S.-H., Arbitrary l-Wave Solutions of the Schrödinger Equation for the Screen Coulomb Potential, International Journal of Modern Physics E 22 (6) (2013) 1350036. https://doi.org/10.1142/S0218301313500365.
Ikhdair, S. M., Sever, R., A perturbative treatment for the bound states of the Hellmann potential, Journal of Molecular Structure: THEOCHEM 809 (1-3) (2007) 103-113. https://doi.org/10.1016/j.theochem.2007.01.019.
Liverts, E. Z., Drukarev, E. G., Krivec, R., Mandelzweig, V. B., Analytic presentation of a solution of the Schrödinger equation, Few-Body Systems 44 (1-4) (2008) 367-370. https://doi.org/10.1007/s00601-008-0328-1.
Maghsoodi, E., Hassanabadi, H., Aydoğdu, O., Dirac particles in the presence of the Yukawa potential plus a tensor interaction in SUSYQM framework, Physica Scripta 86 (1) (2012) 015005. https://doi.org/10.1088/0031-8949/86/01/015005.
Edwards, J. P., Gerber, U., Schubert, C., Trejo, M. A., Weber, A., The Yukawa potential: ground state energy and critical screening, Progress of Theoretical and Experimental Physics 2017 (8) (2017) 083A01. https://doi.org/10.1093/ptep/ptx107.
Hamzavi, H., Movahedi, M., Thylwe, K.-E., Rajabi, A. A., Approximate Analytical Solution of the Yukawa Potential with Arbitrary Angular Momenta, Chinese Physics Letters 29 (8) (2012) 080302. https://doi.org/10.1088/0256-307X/29/8/080302.
Garcia-Martínez, J., García-Ravelo, J., Peña, J. J., Schulze-Halberg, A., Exactly solvable energy-dependent potentials, Physics Letters A 373 (40) (2009) 3619-3623. https://doi.org/10.1016/j.physleta.2009.08.012.
Yekken, R., Lombard, R. J., Energy-dependent potentials and the problem of the equivalent local potential, Journal of Physics A: Mathematical and Theoretical 43 (2010) 125301. https://doi.org/10.1088/1751-8113/43/12/125301.
Yekken, R., Lassaut, M., Lambard, R. J., Applying supersymmetry to energy dependent potentials, Annals of Physics 338 (2013) 195-206. https://doi.org/10.1016/j.aop.2013.08.005.
Hassanabadi, H., Zarrinkamar, S., Rajabi, A. A., Exact Solutions of D-Dimensional Schrödinger Equation for an Energy-Dependent Potential by NU Method, Communications in Theoretical Physics 55 (2011) 541-544. https://doi.org/10.1088/0253-6102/55/4/01.
Hassanabadi, H., Zarrinkamar, S., Hamzavi, H., Rajabi, A. A., Exact Solutions of D-Dimensional Klein–Gordon Equation with an Energy-Dependent Potential by Using of Nikiforov–Uvarov Method, Arabian Journal for Science and Engineering 37 (2012) 209-215. https://doi.org/10.1007/s13369-011-0168-z.
Lombard, R. J., Mareš, J., Volpe, C., Wave equation with energy-dependent potentials for confined systems, Journal of Physics G: Nuclear and Particle Physics 34 (2007) 1879-1889. https://doi.org/10.1088/0954-3899/34/9/002.
Lombard, R. J., Mares, J., The many-body problem with an energy-dependent confining potential, Physics Letters A 373 (4) (2009) 426-429. https://doi.org/10.1016/j.physleta.2008.12.009.
Gupta, P., Mehrotra, I., Study of Heavy Quarkonium with Energy Dependent Potential, Journal of Modern Physics 3 (10) (2012) 1530-1536. https://doi.org/10.4236/jmp.2012.310189.
Budaca, R., Bohr Hamiltonian with an energy-dependent γ-unstable Coulomb-like potential, The European Physical Journal A 52 (2016) 314. https://doi.org/10.1140/epja/i2016-16314-8.
Boumali, A., Labidi, M., Shannon entropy and Fisher information of the one-dimensional Klein–Gordon oscillator with energy-dependent potential, Modern Physics Letters A 33 (6) (2018) 1850033. https://doi.org/10.1142/S0217732318500335.
Hassanabadi, H., Yazarloo, B. H., Zarrinkamar, S., Rahimov, H., Deng-Fan Potential for Relativistic Spinless Particles — an Ansatz Solution, Communications in Theoretical Physics 57 (3) (2012) 339-342. https://doi.org/10.1088/0253-6102/57/3/02.
Nikiforov, A. F., Uvarov, V. B., Special Functions of Mathematical Physics, Basel, Birkhäuser, 1998.
Birkdemir, C., Application of the Nikiforov-Uvarov Method in Quantum Mechanics, In: Theoretical Concept of Quantum Mechanics, Pahlavani, M. R., ed., InTech: Rijeka, Croatia, 2012, Ch. 11. https://doi.org/10.5772/33510.
Abramowitz, M., Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, U.S. Government Printing Office, Washington, 1964. http://people.math.sfu.ca/~cbm/aands/abramowitz_and_stegun.pdf.