Abstract
A robust method of solid-phase extraction technique with use of the phenyl-bonded silica-based sorbent (Si-PH sorbent) for pre-concentration of three booster antifouling biocides: zinc pyrithione, Zineb and Ziram in ultrapure water fortified and estuarine water sample was evaluated for zinc determination by collision cell technology-inductively coupled plasma-mass spectrometry (CCT-ICP-MS). Decontamination process to remove metals and prevent (trans-) metallization of the Si-PH sorbent with 20 mL of nitric acid 0.006 mol L-1 was performed. This proposed solid-phase extraction efficiency of three booster antifouling biocides by the phenyl-bonded silica-based sorbent (Si-PH sorbent) was evaluated in 40 mL of ultrapure water fortified sample (40 μg L-1 of the zinc biocides). The adsorption of zinc pyrithione, Zineb and Ziram were 94.2 ± 0.1%, 85.13 ± 0.04% and 93.35 ± 0.09%, respectively. The limit of detection and limit of quantification values obtained were 0.66 μg L-1 and 2.19 μg L-1, respectively. Good recoveries of zinc pyrithione (85 ± 2%), Zineb (89 ± 5%) and Ziram (111 ± 2%) in the elution step for booster antifouling biocides from the fortified estuarine water were obtained.
References
Yebra, D. M., Kiil, S., Dam-Johansen, K., Antifouling technology—past, present, and future steps towards efficient and environmentally friendly antifouling coatings, Progress in Organic Coatings 50 (2) (2004) 75-104. https://doi.org/10.1016/j.porgcoat.2003.06.001.
Voulvoulis, N., Scrimshaw, M. D., Lester, J. N., Analytical methods for the determination of 9 antifouling paint booster biocides in estuarine water samples, Chemosphere 38 (15) (1999) 3503-3516. https://doi.org/10.1016/S0045-6535(98)00580-3.
Boxall, A. B. A., Comber, S. D., Conrad, A. U., Howcroft, J., Zaman, N., Inputs, Monitoring and Fate Modelling of Antifouling Biocides in UK Estuaries, Marine Pollution Bulletin 40 (11) (2000) 898-905. https://doi.org/10.1016/S0025-326X(00)00021-7.
Thomas, K. V., The environmental fate and behaviour of antifouling paint booster biocides: A review, Biofouling 17 (1) (2001) 73-86. https://doi.org/10.1080/08927010109378466.
Almond, K. M., Trombetta, L. D., The effects of copper pyrithione, an antifouling agent, on developing zebrafish embryos, Ecotoxicology 25 (2) (2016) 389-398. https://doi.org/10.1007/s10646-015-1597-3.
Amara, I., Miled, W., Slama, R. B., Ladhari, N., Antifouling processes and toxicity effects of antifouling paints on marine environment. A review, Environmental Toxicology and Pharmacology 57 (2018) 115-130. https://doi.org/10.1016/j.etap.2017.12.001.
Kobayashi, N., Okamura, H., Effects of new antifouling compounds on the development of sea urchin, Marine Pollution Bulletin 44 (8) (2002) 748-751. https://doi.org/10.1016/S0025-326X(02)00052-8.
Cima, F., Ballarin, L., Immunotoxicity in ascidians: Antifouling compounds alternative to organotins—IV. The case of zinc pyrithione, Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 169 (2015) 16-24. https://doi.org/10.1016/j.cbpc.2014.12.007.
Dallas, L. J., Turner, A., Bean, T. P., Lyons, B. P., Jha, A. N., An integrated approach to assess the impacts of zinc pyrithione at different levels of biological organization in marine mussels, Chemosphere 196 (2018) 531-539. https://doi.org/10.1016/j.chemosphere.2017.12.144.
Ren, T., Fu, G.-H., Liu, T.-F., Hu, K.; Li, H.-R., Fang, W.-H., Yang, X.-L., Toxicity and accumulation of zinc pyrithione in the liver and kidneys of Carassius auratus gibelio: association with P-glycoprotein expression, Fish Physiology and Biochemistry 43 (1) (2017) 1-9. https://doi.org/10.1007/s10695-016-0262-y.
Jung, S. M., Bae, J. S., Kang, S. G., Son, J. S., Jeon, J. H., Lee, H. J., Jeon, J. Y., Sidharthan, M., Ryu, S. H., Shin, H. W., Acute toxicity of organic antifouling biocides to phytoplankton Nitzschia pungens and zooplankton Artemia larvae, Marine Pollution Bulletin 124 (2) (2017) 811-818. https://doi.org/10.1016/j.marpolbul.2016.11.047.
Doose, C. A., Szaleniec, M., Behrend, P., Müller, A., Jastorff, B., Chromatographic behavior of pyrithiones, Journal of Chromatography A 1052 (1-2) (2004) 103-110. https://doi.org/10.1016/j.chroma.2004.08.028.
Hercegová, A., Dömötörová, M., Matisová, E., Sample preparation methods in the analysis of pesticide residues in baby food with subsequent chromatographic determination, Journal of Chromatography A 1153 (1-2) (2007) 54-73. https://doi.org/10.1016/j.chroma.2007.01.008.
Chen, Y., Guo, Z., Wang, X., Qiu, C., Sample preparation, Journal of Chromatography A 1184 (1-2) (2008) 191-219. https://doi.org/10.1016/j.chroma.2007.10.026.
Andrade-Eiroa, A., Canle, M., Leroy-Cancellieri, V., Cerdà, V., Solid-phase extraction of organic compounds: A critical review (Part I), TrAC Trends in Analytical Chemistry 80 (2016) 641-654. https://doi.org/10.1016/j.trac.2015.08.015.
Andrade-Eiroa, A., Canle, M., Leroy-Cancellieri, V., Cerdà, V., Solid-phase extraction of organic compounds: A critical review. part ii, TrAC Trends in Analytical Chemistry 80 (2016) 655-667. https://doi.org/10.1016/j.trac.2015.08.014.
Weissmahr, K. W., Houghton, C. L., Sedlak, D. L., Analysis of the Dithiocarbamate Fungicides Ziram, Maneb, and Zineb and the Flotation Agent Ethylxanthogenate by Ion-Pair Reversed-Phase HPLC, Analytical Chemistry 70 (22) (1998) 4800-4804. https://doi.org/10.1021/ac980626w.
Bones, J., Thomas, K. V., Paull, B., Improved method for the determination of zinc pyrithione in environmental water samples incorporating on-line extraction and preconcentration coupled with liquid chromatography atmospheric pressure chemical ionisation mass spectrometry, Journal of Chromatography A 1132 (1-2) (2006) 157-164. https://doi.org/10.1016/j.chroma.2006.07.068.
Malik, A. K., Sharma, V., Sharma, V. K., Rao, A. L. J., Column Preconcentration and Spectrophotometric Determination of Ziram and Zineb in Commercial Samples and Foodstuffs Using (1,2‘-Pyridylazo)-2-naphthol (PAN)−Naphthalene as Adsorbate, Journal of Agricultural and Food Chemistry 52 (26) (2004) 7763-7767. https://doi.org/10.1021/jf040326h.
Grunnet, K. S., Dahllof, I., Environmental fate of the antifouling compound zinc pyrithione in seawater, Environmental Toxicology and Chemistry 24 (12) (2005) 3001-3006. https://doi.org/10.1897/04-627R.1.
Bajia, S., Ojha, K. G., Synthesis, separation and determination of metal dithiocarbamates complexes by HPLC-ICP-MS, Eurasian Journal of Analytical Chemistry 8 (3) (2013) 107-111. http://www.eurasianjournals.com/Synthesis-Separation-and-Determination-of-Metal-Dithiocarbamates-Complexes-by-HPLC,79714,0,2.html.
Sakkas, V. A., Shibata, K., Yamaguchi, Y., Sugasawa, S., Albanis, T., Aqueous phototransformation of zinc pyrithione: Degradation kinetics and byproduct identification by liquid chromatography–atmospheric pressure chemical ionisation mass spectrometry, Journal of Chromatography A 1144 (2) (2007) 175-182. https://doi.org/10.1016/j.chroma.2007.01.049.
Ahmadi, F., Rajabi, M., Faizi, F., Rahimi-Nasrabadi, M., Maddah, B., Magnetic solid-phase extraction of Zineb by C18-functionalised paramagnetic nanoparticles and determination by first-derivative spectrophotometry, International Journal of Environmental Analytical Chemistry 94 (11) (2014) 1123-1138. https://doi.org/10.1080/03067319.2014.940339.
Hashemi, F., Rastegarzadeh, S., Pourreza, N., A combination of dispersive liquid–liquid microextraction and surface plasmon resonance sensing of gold nanoparticles for the determination of ziram pesticide, Journal of Separation Science 41 (5) (2018) 1156-1163. https://doi.org/10.1002/jssc.201700992.
Thomas, K. V., Determination of the antifouling agent zinc pyrithione in water samples by copper chelate formation and high-performance liquid chromatography–atmospheric pressure chemical ionisation mass spectrometry, Journal of Chromatography A 833 (1) (1999) 105-109. https://doi.org/10.1016/S0021-9673(98)01009-7.
Harino, H., Midorikawa, S., Arai, T., Ohji, M., Cu, N. D., Miyazaki, N., Concentrations of booster biocides in sediment and clams from Vietnam, Journal of the Marine Biological Association of the United Kingdom 86 (5) (2006) 1163-1170. https://doi.org/10.1017/S0025315406014147.
Kim, T. H., Jung, G. H., Lee, E. H., Park, H. R., Lee, J. K., Kim, H. G., Development and validation of liquid chromatography–tandem mass spectrometry method for simultaneous determination of zinc pyrithione and pyrithione in shampoos, Acta Chromatographica 30 (3) (2018) 200-205. https://doi.org/10.1556/1326.2017.00294.
Lo, C.-C., Ho, M.-H., Hung, M.-D., Use of High-Performance Liquid Chromatographic and Atomic Absorption Methods To Distinguish Propineb, Zineb, Maneb, and Mancozeb Fungicides, Journal of Agricultural and Food Chemistry 44 (9) (1996) 2720-2723. https://doi.org/10.1021/jf960008l.
Kondoh, Y., Takano, S., Determination of zinc pyrithione in cosmetic products by high-performance liquid chromatography with pre-labelling, Journal of Chromatography A 408 (1987) 255-262. https://doi.org/10.1016/S0021-9673(01)81808-2.
Agarwal, S., Aggarwal, S. G., Singh, P., Quantification of ziram and zineb residues in fog-water samples, Talanta 65 (1) (2005) 104-110. https://doi.org/10.1016/j.talanta.2004.05.041.
Kumar, P., Ahlawat, S., Chauhan, R., Kumar, A., Singh, R., Kumar, A., In vitro and field efficacy of fungicides against sheath blight of rice and post-harvest fungicide residue in soil, husk, and brown rice using gas chromatography-tandem mass spectrometry, Environmental Monitoring and Assessment 190 (9) (2018) 503. https://doi.org/10.1007/s10661-018-6897-7.
U.S. EPA, Method 6020B (SW-846): Inductively Coupled Plasma-Mass Spectrometry, Revision 2. Washington, 2014. https://www.epa.gov/esam/epa-method-6020b-sw-846-inductively-coupled-plasma-mass-spectrometry.
Hu, Z., Hu, S., Gao, S., Liu, Y., Lin, S., Volatile organic solvent-induced signal enhancements in inductively coupled plasma-mass spectrometry: a case study of methanol and acetone, Spectrochimica Acta Part B: Atomic Spectroscopy 59 (9) (2004) 1463-1470. https://doi.org/10.1016/j.sab.2004.07.007.
Currie, L. A., Nomenclature in evaluation of analytical methods including detection and quantification capabilities, Pure and Applied Chemistry 67 (10) (1995) 1699-1723. https://doi.org/10.1351/pac199567101699.
Phenomenex, Sample preparation – made simple – selection and users guide, Phenomenex: Torrance, 2015. http://phx.phenomenex.com/lib/BR27941114_W.pdf.
Nováková, L., Vlčková, H., A review of current trends and advances in modern bio-analytical methods: Chromatography and sample preparation, Analytica Chimica Acta 656 (1-2) (2009) 8-35. https://doi.org/10.1016/j.aca.2009.10.004.
Hennion, M.-C., Solid-phase extraction: method development, sorbents, and coupling with liquid chromatography, Journal of Chromatography A 856 (1-2) (1999) 3-54. https://doi.org/10.1016/S0021-9673(99)00832-8.
Araújo, D., Machado, W., Weiss, D., Mulholland, D. S., Boaventura, G. R., Viers, J., Garnier, J., Dantas, E. L., Babinski, M., A critical examination of the possible application of zinc stable isotope ratios in bivalve mollusks and suspended particulate matter to trace zinc pollution in a tropical estuary, Environmental Pollution 226 (2017) 41-47. https://doi.org/10.1016/j.envpol.2017.04.011.
Milazzo, A. D. D., Silva, A. C. M., Oliveira, D. A. F., Cruz, M. J. M., The influence of seasonality (dry and rainy) on the bioavailability and bioconcentration of metals in an estuarine zone, Estuarine, Coastal and Shelf Science 149 (2014) 143-150. https://doi.org/10.1016/j.ecss.2014.08.013.
Vallet-Regí, M., Izquierdo-Barba, I., Colilla, M., Structure and functionalization of mesoporous bioceramics for bone tissue regeneration and local drug delivery, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370 (1963) (2012) 1400-1421. https://doi.org/10.1098/rsta.2011.0258.
Sigma-Aldrich Co., Guide to Solid Phase Extraction, Bulletin 910, 1998. https://www.sigmaaldrich.com/Graphics/Supelco/objects/4600/4538.pdf.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2020 Eclética Química Journal