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Editorial 

On May 18, 2016, the science and technology lost a real giant—José Arana Varela, who passed away at age 

72. Describing him as a giant does not do justice to the scientist, the professor, the mentor, and the human being. It 

is with great pleasure that we write the preface to the Eclética Química Journal in honor of Professor José Varela. He 

was a close colleague, a collaborator, and, above all, a friend for nearly 50 years. This opportunity represents just an 

excellent excuse to celebrate a most remarkable physicist who has always been far ahead of his time, thanks to a 

unique combination of scientific visions, creativity, breadth, drive, and dedication. Rather than describing José’s 

distinguished academic career, here we highlight different aspects, which we believe have given it particular impact. 

Varela was born in Martinópolis, São Paulo, Brazil, on April 11, 1944, and left this world in his long-time 

home of Araraquara, São Paulo. Obviously, a lot of things happened in between, but this editorial is going to focus 

on the recollections of this giant as seen through his former colleagues and friends. He held a degree in Physics from 

the University of São Paulo (1968), a Master’s degree in Physics from the Instituto Tecnológico de Aeronáutica 

(1975) and a PhD in Ceramic Materials from the University of Washington (1981). He published over 500 articles in 

international journals. He developed more than 35 projects and agreements with governments: federal and state and 

also with companies. He supervised and co-supervised more than 50 theses and dissertations. He received more than 

20 awards and honorable mentions, including the Golden Epsilon Award from the Spanish Society of Ceramics and 

Glass. He worked on a strong exchange with national and international research institutions in Spain, France, USA, 

Slovenia and Italy. He focused his research in Materials and Metallurgical Engineering, with emphasis on Ceramics, 

worked mainly on the following topics: thin films, ferroelectric and dielectric materials, varistors, grain boundary 

properties and sintering. 

José Varela was a true innovator who opened numerous new fields of research. A major strength of his 

scientific approach has always been to precisely demonstrate with rigorous methodologies and simple examples new 

notions, and to put these notions in much broader perspectives—often inspired by philosophy and arts—to generate 

paradigms of deep impact. From early works dedicated to sintering and electronic ceramics, to those of us who 

considered Varela a cherished friend, the fire of science burned brightly within him until the very end. To those of 

us who considered Varela a cherished friend, the fire of science burned brightly within him until the very end. Many 

of his colleagues have described him as a force of nature, which indeed he was. He was determined to do cutting 

edge science each and every day, even toward the end of his life. Amazingly, even several months before his death, 

at the ripe young age of 71, he was planning on the next project and the meeting with friend to drink a good wine. 

To his friends and students, Varela will be sorely missed. He was a role model who showed us not only how to be a 

great scientist but also a wonderful human being. He inspired us by his devotion to his craft and his passion to unlock 

one of the secrets of nature. He never gave up; he was passionate and truly lived a remarkable life that serves as a 

shining example to all his colleagues and friends. 

Opening this issue, the preparation of a W-doped Ag3PO4 with high photocatalytic activity by the chemical 

coprecipitation method and irradiated with a femtosecond laser (FL) is described. A higher structural disorder in the 

[PO4] clusters was observed for the FL irradiated sample (Ag3PO4:W-FL), indicating the formation of Ag metallic 

from the Ag3PO4 structure. The photocatalytic activity of the samples was studied by photodegradation of rhodamine 

B under visible light irradiation. The formation of Ag nanoparticles on the surface of Ag3PO4:W led to a degradation 

rate constant 3.54 times higher than the nonirradiated sample. Follow, it is described the catalytic potential of titanium 

oxide (TiO2) and gold doped titanium oxide nanoparticles applied to the selectivity benzyl alcohol oxidation. A 

composite nanomaterial was obtained with high synergy between gold and TiO2 nanoparticles, resulting in high 

catalytic activity and selectivity for benzaldehyde formation. Selective oxidation of alcohols is one of the most 

significant transformations of organic chemistry since it is essential for industrial intermediates production. The next 

article describes the synthesis of YVO4:RE (RE = Eu, Tm, and Yb/Er) nanoparticles using the microwave-assisted 

hydrothermal method. Different characterization techniques have been employed to examine the structural, optical, 

https://revista.iq.unesp.br/index.php/ecletica
https://revista.iq.unesp.br/index.php/ecletica


Editorial 

revista.iq.unesp.br 

 

as well as its morphology and the photoluminescence (PL) emissions. The as-synthesized samples present different 

emission colors due to RE3+ ions, as well as nanosized spherical morphology. These materials are efficient for optical 

devices. Afterwards, it is presented the quantum chemistry methods used to study a boron nitride nanotube (BNNT) 

and a carbon nanotube (CNT) as possible carrier agents for the antichagasic benznidazole (BNZ) to improve its water 

solubility and bioavailability in the organism. For the BNZ@BNNT complex, it was possible to note short 

interactions, at a distance of 0.215 nm, between hydrogen atoms from BNZ and nitrogen atoms from BNNT. Overall, 

the results demonstrate that the BNNT is a better candidate to be used as a carrier agent for BNZ than the CNT due 

to its higher structural and chemical stability, lower binding energy and lower solvation enthalpy. In the sequence, 

the production of activated carbon (AC) from pumpkin seeds by simultaneous carbonization activation for 

occupational respiratory protection is described. The AC is derived from carbonaceous sources and used as a 

technological element for various industrial purposes. Due to this context and to enhance sustainability concepts and 

human health in the production of materials, this study aimed to produce activated carbon from an abundant 

agricultural waste in northeast Brazil through a route that not only favors its simultaneous carbonization and 

activation but also its thermal neutralization, enhancing sustainability concepts and human health in the production 

of materials. The AC showed yields between 73%-78% and adsorption capacity and selectivity to ammonia gas. The 

morphology varied in function of the biomass interaction with the type and concentration of acid used. Follow, the 

readers find a study of surfactant effects in the morphology and the photocatalytic activity of the BaMoO4 crystals 

where experimental techniques were applied to investigate the order-disorder degree of samples. The morphologies 

were investigated by field emission scanning electron microscopy, and the theoretical crystal morphologies were 

obtained through the Wulff construction. The photocatalytic activity efficiency of the BaMoO4 crystals were tested 

against the rhodamine (RhB) dye. BaMoO4 synthesized with the surfactant sodium dodecyl sulfate presented a 

monophasic crystal with a disordered structure. The presence of surfactant generated pores on the surfaces of the 

material that were responsible for the appearance of the adsorptive ability enhancing the adsorption process of the 

RhB dye in the absence of ultraviolet light. Subsequently, the influence of Eu3+ cations in the host matrix of CaZrO3 

is discussed by analyzing the luminescence and structural properties. The Ca 1-x ZrO3:Eux crystals were obtained by 

a simple sol-gel method followed by a soft thermal treatment without any surfactant. The structural characterization 

at short-, medium- and long-distance allowed to observe the effect of the dopant in the host matrix. The luminescence 

profile of the sample was investigated by analyzing the excitation and emission spectrum monitoring the emission at 

614 nm and excited at 394 nm, noting that the sample Eu-doped with 0.08 mol% has greater emission intensity. The 

color variations of the characteristic emissions of Ca 1-x ZrO3:Eux crystals were evaluated according to the 

Commission Internationale de L’Éclairage, observing a red shift for all Eu-doped samples. A general 

luminescence scheme was proposed combining the density of state and the band structure calculations. Nowadays, 

the disposal of polluting substances, such as methylene blue (MB) dye, into wastewater, arouses the interest of 

technologies to remove these pollutants. Here, Fe2O3 was obtained by the conventional hydrothermal process and 

heat-treatment, subsequently FL-irradiated treatment. The mixture of irradiated α-Fe2O3 and ε-Fe2O3 phases revealed 

lower crystallinity than irradiated α-Fe2O3 samples that together with the increase in crystallinity were crucial to 

improve the performance of α-Fe2O3 irradiated sample in the discoloration of MB, reaching 90% in 75 min of dye 

solution exposure under UV irradiation. This result was attributed to the increase in active sites due to the density of 

defects generated, which enhance the degradation process. The next work describes the effect of coupling the Zr-

metal-organic frameworks (MOFs) and SnO2 and its potential for application as photoelectrode in solar cells. 

Coupling was performed by mechanical mixture followed by heat treatment and the effect of adding two amounts of 

Zr-MOF (25 and 50 wt%) on morphology and photoelectrochemical properties were investigated. The J-V curves 

show that the coupling of 25 wt% Zr-MOFs with SnO2 improves the charge transfer characteristics under light 

irradiation 1.6 times compared to the pure SnO2. Completes this issue the research concerning the modifications of 

materials for improvement of its photocatalytic activity that has been widely increased due to the potential of 

heterogeneous photocatalysis for wastewater treatment. One of the most employed methods is the metal doping 

process into semiconductors, which allows the modification of their electronic structure. As observed by XRD and 
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Raman results, the Cu insertion into TiO2 structure induced the stabilization of anatase phase, increasing its content 

in the samples in relation to the bare TiO2. The photoluminescence spectroscopy (PL) results indicated that the Cu 

insertion into TiO2 promoted a decrease in the PL emission intensity and a shift of the emission band to the blue 

region. The photocatalytic activity of the samples for RhB degradation under UV light irradiation indicated that the 

Cu-doping into TiO2 led to an enhancement of the photocatalytic activity compared to the bare sample. 

 

Prof. Dr. Elson Longo (Guest Editor) 

Prof. Dr. Juan Manuel Andrés Bort (Guest Editor) 
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Editor’s note 

The Eclética Química Journal has a line in its scope to publish special issues in honor of scientists with 

relevant contributions to the scientific and technological development in Chemistry and related areas. Prof. José 

Arana Varela joined the Instituto de Química-UNESP, Araraquara, in 1980, coming from the Presidente Prudente 

Campus of UNESP, initially dedicating himself to the creation of a multidisciplinary research group, the 

coordination and development of several research projects in ceramic materials, thin films, ferroelectrics, 

dielectrics, varistors, refractories, sintering processes and chemical routes for the preparation of ceramic materials 

(Pechini method). All these actions have stimulated the creation of the Graduate Program in Physical Chemistry at 

IQ-UNESP. He worked together with other professors from the Araraquara Campus in the design and assembly of 

several modernly equipped research laboratories. He actively participated in the process of unifying the various 

graduate courses at the Instituto de Química, currently the Graduate Course in Chemistry, of which he was 

coordinator. He has held several administrative positions at the Instituto de Química and UNESP, all of them of 

special relevance to scientific development and technological innovation. He also participated in scientific-

administrative activities in various development agencies, especially FAPESP, in scientific journals as a reviewer 

and member of the editorial board and he stood out as a researcher in the national and international scientific 

community that earned him several national and international awards. So, this special issue intends to pay a simple 

tribute to Prof. Varela and aims to recognize its enormous scientific contribution at the national and international 

levels as well as thank him for his dedication, teachings and collaboration in the training of qualified human 

resources in science and technology, and also for his futuristic vision of the materials area. It contains scientific 

contributions from collaborators and colleagues of Prof. Varela, especially on preparation of a W-doped Ag3PO4 

with high photocatalytic activity, the catalytic potential of titanium oxide (TiO2) and gold doped titanium oxide 

nanoparticles, quantum chemistry methods in studying boron nitride nanotube and carbon nanotube as carrier agent 

for the antichagasic benznidazole, the production of activated carbon from pumpkin seeds by simultaneous 

carbonization activation for occupational respiratory protection, surfactant effects in the morphology and 

photocatalytic activity of the BaMoO4 crystals, the influence of Eu3+ cations in the host matrix of CaZrO3 by 

analyzing the luminescence and structural properties, Fe2O3 preparation by hydrothermal process, heat-treatment 

followed by femtosecond laser-irradiation and use in depolluting wastewater, the effect of coupling the Zr-metal-

organic frameworks and SnO2 as promising applications as photoelectrode in solar cells and materials modifications 

for improving the photocatalytic activity for wastewater treatment. The articles published here followed all the 

standard procedures used by the Eclética Química Journal and fulfilled all the qualitative requirements of selection, 

peer review and editing. 

 

Prof. Dr. Assis Vicente Benedetti 

Editor-in-Chief 
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INSTRUCTIONS FOR AUTHORS 
 

BEFORE YOU SUBMIT 
 
1. Check Eclet. Quim. J.’s focus and scope 
 
Eclética Química Journal is a peer-reviewed quarterly publication of the Institute of Chemistry of São Paulo State 

University (UNESP). It publishes original researches as articles, reviews and short reviews in all areas of Chemistry. 

 
2. Types of papers 
 

a. Original articles 

b. Reviews 

c. Short reviews 

d. Communications 

e. Technical notes 

f. Articles in education in chemistry and chemistry-related areas 

 

Manuscripts submitted for publication as full articles and communications must contain original and unpublished 

results and should not have been submitted elsewhere either partially or whole. 

 

a. Original articles 
 

The manuscript must be organized in sections as follows: 

 

1. Introduction 

2. Experimental 

3. Results and Discussion 

4. Conclusions 

References 

 

Sections titles must be written in bold and sequentially numbered; only the first letter should be in uppercase letter. 

Subsections, numbered as exemplified, should be written in normal and italic letters; only the first letter should be in 

uppercase letter.  

 

Example: 

 

1. Introduction 

1.1 History 

 

2. Experimental 

2.1 Surface characterization 

2.1.1 Morphological analysis 

 

b. Reviews 
 

Review articles should be original and present state-of-the-art overviews in a coherent and concise form covering the 

most relevant aspects of the topic that is being revised and indicate the likely future directions of the field. Therefore, 
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before beginning the preparation of a Review manuscript, send a letter (one page maximum) to the Editor with the 

subject of interest and the main topics that would be covered in the Review manuscript. The Editor will communicate 

his decision in two weeks. Receiving this type of manuscript does not imply acceptance to be published in Eclet. 

Quím. J. It will be peer-reviewed. 

 

c. Short reviews 
 

Short reviews should present an overview of the state-of-the-art in a specific topic within the scope of the Journal 

and limited to 5,000 words. Consider a table or image as corresponding to 100 words. Before beginning the 

preparation of a Short Review manuscript, send a letter (one page maximum) to the Editor with the subject of interest 

and the main topics that would be covered in the Short Review manuscript. 

 

d. Communications 
 

Communications should cover relevant scientific results and are limited to 1,500 words or three pages of the Journal, 

not including the title, authors’ names, figures, tables and references. However, Communications suggesting 

fragmentation of complete contributions are strongly discouraged by Editors. 

 

e. Technical notes 
 

Descriptions of methods, techniques, equipment or accessories developed in the authors’ laboratory, as long as they 

present chemical content of interest. They should follow the usual form of presentation, according to the peculiarities 

of each work. They should have a maximum of 25 pages, including figures, tables, diagrams, etc. 

 

f. Articles in education in chemistry and chemistry-correlated areas 
 

Research manuscript related to undergraduate teaching in Chemistry and innovative experiences in undergraduate 

and graduate education. They should have a maximum of 25 pages, including figures, tables, diagrams, and other 

elements. 

 

3. Special issues 
 

Special issues with complete articles dedicated to Symposia and Congresses and to special themes or in honor of 

scientists with relevant contributions in Chemistry and correlate areas can be published by Eclet. Quim. J. under the 

condition that a previous agreement with Editors is established. All the guides of the journal must be followed by the 

authors. 

 

4. Approval 
 

Ensure all authors have seen and approved the final version of the article prior to submission. All authors must also 

approve the journal you are submitting to. 

 

ETHICAL GUIDELINES 
 

Before starting the submission process, please be sure that all ethical aspects mentioned below were followed. 

Violation of these ethical aspects may preclude authors from submitting or publishing articles in Eclet. Quim. J. 

 

a. Coauthorship: The corresponding author is responsible for listing as coauthors only researchers who have 

really taken part in the work, for informing them about the entire manuscript content and for obtaining their 

permission to submit and publish it. 
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b. Nonauthors: Explicit permission of a nonauthor who has collaborated with personal communication or 

discussion to the manuscript being submitted to Eclet. Quím. J. must be obtained before being cited. 

 

c. Unbiased research: Authors are responsible for carefully searching for all the scientific work relevant to their 

reasoning irrespective of whether they agree or not with the presented information. 

 

d. Citation: Authors are responsible for correctly citing and crediting all data taken from other sources. This 

requirement is not necessary only when the information is a result of the research presented in the manuscript 

being submitted to Eclet. Chem. J. 

 

e. Direct quotations: The word-for-word reproduction of data or sentences as long as placed between quotation 

marks and correctly cited is not considered ethical deviation when indispensable for the discussion of a specific 

set of data or a hypothesis. 

 

f. Do not cite: Master’s Degree dissertations and PhD theses are not accepted; instead, you must cite the 

publications resulted from them. 

 

g. Plagiarism: Plagiarism, self-plagiarism, and the suggestion of novelty when the material was already published 

are unaccepted by Eclet. Quim. J. Before reviewing a manuscript, the Turnitin antiplagiarism software will be 

used to detect any ethical deviation. 

 

h. Simultaneous submissions of the same manuscript to more than one journal is considered an ethical deviation 

and is conflicted to the declaration has been done below by the authors. 

 

i. Studies with humans or other animals: Before submitting manuscripts involving human beings, materials 

from human or animals, the authors need to confirm that the procedures established, respectively, by the 

institutional committee on human experimentation and Helsinki’s declaration, and the recommendations of the 

animal care institutional committee were followed. Editors may request complementary information on ethical 

aspects. 

 

COPYRIGHT NOTICE 
 

The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim. J., 

after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review 

process. 

 

When a published manuscript in Eclet. Quim. J. is also published in other Journal, it will be immediately withdrawn 

from Eclet. Quim. J. and the authors informed of the Editor decision. 

 

Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles 

published by Eclet. Quim. J. are licensed under the Creative Commons Attribution 4.0 International License. 

 

PUBLICATION CHARGES 
 

Eclética Química Journal is supported by the Institute of Chemistry/UNESP and publication is free of charge for 

authors. 
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MANUSCRIPT PREPARATION 

 

COVER LETTER 
 

We provide a template to help you prepare your cover letter. To download it, click here. 

 
The cover letter MUST include: 
 
1. Identification of authors 
 

a. The authors’ full names (they must be written in full and complete, separated by comma) 

 
João M. José  Incorrect 

J. M. José  Incorrect 

João Maria José  Correct! 

 

b. E-mail addresses and affiliations (neither more nor less than two instances) of all authors; 

c. ORCID ID links; 

d. A plus sign (+) indicating the corresponding author. 

 

Example: 

 

Author Full Name1+, Author Full Name2 

 

1. University, Faculty or Institute, City, Country. 

2. Company, Division or Sector or Laboratory, City, Country. 

 

+ Author 1: address@mail.com, ORCID: https://orcid.org/xxxx-xxxx-xxxx-xxxx 

Author 2: address@mail.com, ORCID: https://orcid.org/xxxx-xxxx-xxxx-xxxx 

 

2. Authors’ contribution 
 

We request authors to include author contributions according to CRediT taxonomy standardized contribution 

descriptions. CRediT (Contributor Roles Taxonomy) is a high-level taxonomy, including 14 roles, that can be used 

to represent the roles typically played by contributors to scientific scholarly output. The roles describe each 

contributor’s specific contribution to the scholarly output. 

 

a. Please, visit this link (https://casrai.org/credit/) to find out which role(s) the authors fit into; 

b. Do not modify the role names; do not write “all authors” in any role. Do not combine two or more roles 

in one line. 

c. If there are any roles that no author has engaged in (such as funding in papers that were not funded), write “Not 

applicable” in front of the name of the role; 

d. Write the authors’ names according to the American Chemistry Society (ACS) citation style. 

 

Example: 

 

Conceptualization: Foster, J. C.; O’Reilly, R. K. 

Data curation: Varlas, S.; Couturaud, B.; Coe, J.; O’Reilly, R. K. 

Formal Analysis: Foster, J. C.; Varlas, S. 

Funding acquisition: Not applicable. 
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Investigation: Foster, J. C.; O’Reilly, R. K. 

Methodology: Coe, J.; O’Reilly, R. K. 

Project administration: O’Reilly, R. K. 

Resources: Coe, J. 

Software: Not applicable. 

Supervision: O’Reilly, R. K. 

Validation: Varlas, S.; Couturaud, B. 

Visualization: Foster, J. C. 

Writing – original draft: Foster, J. C.; Varlas, S.; Couturaud, B.; Coe, J.; O’Reilly, R. K. 

Writing – review & editing: Foster, J. C.; Varlas, S.; Couturaud, B.; Coe, J.; O’Reilly, R. K. 

 

4. Indication of reviewers 
 

We kindly ask the authors to suggest five suitable reviewers, providing full name, affiliation, and email. 

 

5. Other information 
 

a. The authors must write one paragraph remarking the novelty and relevance of the work; 

b. The corresponding author must declare, on behalf of the other authors, that the manuscript being submitted is 

original and its content has not been published previously and is not under consideration for publication elsewhere; 

c. The authors must inform if there is any conflict of interest. 

 

6. Acknowledgements and funding 
 

Acknowledgements and funding information will be requested after the article is accepted for publication. 

 

7. Data availability statement 
 

A data availability statement informs the reader where the data associated with your published work is available, and 

under what conditions they can be accessed. Therefore, authors must inform if: 

 

Data will be available upon request; 

All dataset were generated or analyzed in the current study; or 

Data sharing is not applicable. 

 

MANUSCRIPT 
 

We provide a template to help you prepare your manuscript. To download it, click here. 

 

1. General rules 
 

Only manuscripts written in English will be accepted. British or American usage is acceptable, but they should not 

be mixed. Non-native English speakers are encouraged to have their manuscripts professionally revised before 

submission. 

 

Manuscripts must be sent in editable files as *.doc, *.docx or *.odt. The text must be typed using font style Times 

New Roman and size 12. Space between lines should be 1.5 mm and paper size A4, top and bottom margins 2.5 cm, 

left and right margins 2.0 cm. 

 

All contributions must include an abstract (170 words maximum), three to five keywords and a graphical abstract 

(8 cm wide × 8 cm high). 
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Supplementary information: all type of articles accepts supplementary information (SI) that aims at complementing 

the main text with material that, for any reason, cannot be included in the article. 

 

TITLE 
 

The title should be concise, explanatory and represent the content of the work. The title must have only the first letter 

of the sentence in uppercase. The following are not allowed: acronyms, abbreviations, geographical location of the 

research, en or em dashes (which must be replaced by a colon). Titles do not have full point. 

 

ABSTRACT 
 

Abstract is the summary of the article. The abstract must be written as a running text not as structured topics, but its 

content should present background, objectives, methods, results, and conclusion. It cannot contain citations. The text 

should be written in a single paragraph with a maximum of 170 words. 

 

KEYWORDS 
 

Keywords are intended to make it easier for readers to find the content of your text. As fundamental tools for database 
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ABSTRACT: In this work, the W-doped Ag3PO4 was 

prepared by the chemical coprecipitation method and irradiated 

with a femtosecond laser (FL). The successful formation of the 

Ag/Ag3PO4:W heterostructure was confirmed by XRD analysis. 

A higher structural disorder in the [PO4] clusters was observed 

for the FL irradiated sample (Ag3PO4:W-FL), indicating the 

formation of Ag metallic from the Ag3PO4 structure. The 

photocatalytic activity of the samples was studied by 

photodegradation of rhodamine B under visible light irradiation. 

The formation of Ag nanoparticles on the surface of Ag3PO4:W 

led to a degradation rate constant 3.54 times higher than the 

nonirradiated sample. This higher photocatalytic activity was 

related to the surface plasmon resonance effect of the Ag 

metallic, which acts by capturing photoexcited electrons from 

the Ag3PO4:W, avoiding the recombination of electron-hole 

pairs, and thus improving the photocatalytic activity. 
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1. Introduction 
 

Water sources contain various types of contaminants 

(Sousa et al., 2018), with industrial waste being the 

contaminants that draw the major attention in 

environmental pollution, thus requiring a suitable 

treatment (Karimi-Maleh et al., 2020). Among 

industrial wastes, organic dyes are the main concern due 

to their high generated content and toxicity, being of 

fundamental importance the proper treatment. 

Rhodamine B (RhB) is an organic dye that can cause 

damage to humans, leading to skin and eye irritations 

and respiratory problems (Aljerf, 2018; Dong et al., 

2010). Several treatment methods have been studied, 

such as heterogeneous photocatalysis, which has been 

considered promising for the treatment of organic dyes 

because of its green and clean aspects, simplicity and 

low cost (Zangeneh et al., 2015). Silver phosphate 

(Ag3PO4) has been receiving attention from researchers 

since its discovery for presenting photocatalytic 

properties such as the extremely high photooxidative 

capacity for the evolution of O2 from water and the 

decomposition of efficient organic dyes using sunlight 

(Chen et al., 2015; He et al., 2019; Trench et al., 2018; 

Zwara et al., 2018). Furthermore, Ag3PO4 presents 

advantages in relation to other well-known 

photocatalysts, such as TiO2, due to its ability to absorb 

light in the visible region (Fujishima and Honda, 1972). 

However, Ag3PO4 has the disadvantage of 

photocorrosion and fast recombination of electron-hole 

pairs, decreasing its stability as a photocatalyst, making 

its use unfeasible (Chen et al., 2015). Therefore, studies 

that aim to modify to improve the Ag3PO4 

photocatalytic activity are of great interest (R. Santos et 

al., 2020; Shaveisi and Sharafnia, 2020; Shi et al., 

2019). 

Among the modification methods, the doping 

process was applied to overcome these disadvantages of 

Ag3PO4. Our research group has showed a significant 

improvement of the photocatalytic performance of Mo- 

and W-doped Ag3PO4 (Trench et al., 2018; 2020), while 

very recently ultra-active Ag3PO4 with different W 

doping rates were successfully synthesized by Trench et 

al., 2020. Moreover, the deposition of noble 

nanoparticles, such as Ag, Au, Pt and Pd, onto the 

surface of Ag3PO4 is an important approach to produce 

a metal semiconductor composite with enhanced 

photocatalytic performance (Y. Liu et al., 2012; Yan et 

al., 2014; Z. Liu et al., 2017). This behavior mainly 

stems from the surface plasmon resonance (SPR) effect 

of metal nanoparticles, which are related to the 

collective oscillations of free electrons that can lead to 

improved visible light absorption, the superior 

separation of electron-hole pairs in the composite 

material, and by the inhibition of photocorrosion 

mechanisms due to the accumulation of electrons in the 

Ag nanoparticles instead of Ag3PO4 surface (Li et al., 

2019). 

The decoration of semiconductors with metal 

nanoparticles is mainly conducted by the adsorption of 

metal precursors on their surface followed by the 

chemical reduction in solution (Kochuveedu et al., 

2013). Alternatively, the femtosecond laser (FL) 

irradiation is attracting attention as a cost-effective, fast 

and clean method for the fabrication of metal-

semiconductor heterostructure in which the requirement 

of organic solvents or chemical reducing agents are 

minimized (Tan et al., 2013; Vorobyev and Guo, 2013). 

The short pulses of the laser can induce the nanoparticles 

formation from distinct bulk targets, as the migration of 

Ag atoms to the surface of complex oxides followed by 

their reduction into metallic species (Machado et al., 

2018). Our research group reported the formation of Ag 

nanoparticles on α-Ag2WO4 with superior bactericidal 

activity (Assis et al., 2018), the laser-induced formation 

of Ag/Cr particles on AgCrO4 (Lemos et al., 2019), and 

the synthesis of Ag−Bi nanoalloys from Ag2WO4 and 

NaBiO3 targets (Machado et al., 2018). In special, we 

reported the nucleation and growth of Ag nanoparticles 

on Ag3PO4 surface mediated by FL irradiation (C. 

Santos et al., 2019). As a step forward, in the present 

study we demonstrate the formation of Ag/Ag3PO4:W 

heterostructure by FL irradiation and its superior 

photocatalytic activity in compare to Ag3PO4:W, as 

evidenced by RhB visible light-driven photodegradation 

process. 

 

2. Materials and methods 
 

2.1 Synthesis of Ag3PO4:W and preparation of 

Ag3PO4:W-FL samples 
 

The Ag3PO4:W sample was synthesized using the 

coprecipitation method and doped with 1% mol 

Na2WO4·2H2O, as previously reported by Trench et al. 

(2020). 

Ag3PO4:W was irradiated with a Ti:sapphire laser 

(Femtopower Compact Pro, Femto Lasers) using 30 fs 

full width at half maximum (FWHM) pulses at the 

central wavelength of 800 nm, and a repetition rate of 1 

kHz. A laser beam of 6 mm diameter and mean power 

of 185 mW was focused onto the surface of Ag3PO4:W 

with a 75 mm lens. To obtain the Ag3PO4:W-FL 

heterostructure, the Ag3PO4:W was placed at the bottom 

of a quartz cuvette attached to a two-dimensional 
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motion-controlled stage moving in a raster scanning at a 

constant speed of 0.5 mm s–1 in the focus plane 

perpendicular to the laser beam. 

 

2.2 Characterization techniques 
 

The structural features at long-range of the samples 

were investigated by X-ray diffraction (XRD) 

performed in a D/Max-2500PC diffractometer (Rigaku, 

Japan) using Cu Kα radiation (λ = 1.54056 Å), at a scan 

rate of 0.5° min–1. The structural features at short-range 

of the samples were investigated by micro-Raman 

scattering spectroscopy measurements performed in a 

LabRAM iHR550 Horiba Jobin Yvon spectrometer 

coupled with a charge-coupled device (CCD, Synapse) 

as a signal detector, and an ion argon laser with 514.5 

nm of wavelength (Melles Griot). The optical absorption 

spectroscopy measurements in the ultraviolet and visible 

region were performed in the diffuse reflectance mode 

in a Varian spectrophotometer model Cary 5G (USA) in 

the range of 250–800 nm. Field emission scanning 

electron microscopy (FE-SEM) was performed using a 

FEI microscope (Model Inspect F50) operating at 5 kV. 

 

2.3 Photocatalytic experiments 
 

The photocatalytic activity of Ag3PO4:W and 

Ag3PO4:W-FL samples were tested for degradation of 

RhB (95%, Aldrich) under visible light irradiation. For 

this experiment, 50 mg of each sample and 50 mL of 

RhB (10 mg L–1) were used, which were submitted to an 

ultrasonic bath (Branson, model 1510; frequency 42 

kHz) for 5 min and 30 min of constant agitation, in order 

to reach the adsorption-desorption balance and later 

exposed to irradiation of six lamps (Philips TL-D, 15 

W). Aliquots were taken at 1 min intervals, centrifuged 

and their degradation monitored by measuring the peak 

of maximum RhB absorption (λmax = 554 nm) using an 

ultraviolet-visible (UV-Vis) spectrophotometer (V-660, 

JASCO). A test under the same conditions without the 

presence of catalysts was also carried out. 

 

3. Results and discussion 
 

Figure 1a shows the XRD patterns of Ag3PO4:W and 

Ag3PO4:W-FL samples. The diffraction peaks for both 

samples indicated the cubic phase of Ag3PO4 with P-43n 

space group, according to the Inorganic Crystal 

Structure Database (ICSD) code 14000 (Masse et al., 

1976). No secondary or any dopant related phases were 

observed for Ag3PO4:W sample, indicating the 

successfully of insertion of W as dopant into the Ag3PO4 

structure. However, for the sample irradiated with the 

FL, it was observed the emergence of a peak at 

approximately 37.8° (2θ), as can be seen in Fig. 1b. The 

as-mentioned peak is assigned to the (111) diffraction 

plane of cubic phase of Ag with Fm-3m space group, 

which is the most intense diffraction peak for this 

structure, according to the ICSD code 604630 (Jette and 

Foote, 1935). It is well-known that the FL irradiation in 

Ag-containing materials, such as Ag3PO4, induces the 

reduction of Ag+ cations in the structure for the 

formation of Ag nanoparticles on the semiconductor 

surface (Assis et al., 2018; 2019; C. Santos et al., 2019). 

Herewith, the FL irradiation effectively allowed the 

formation of Ag/Ag3PO4:W heterostructure in the 

Ag3PO4:W-FL samples. 

 

 

 
Figure 1. XRD patterns of Ag3PO4:W and Ag3PO4:W-

FL samples in the range of 10–100° (a) and in the range 

of 33–50° (b). 

 

Figure 2 shows the Raman spectra of Ag3PO4:W and 

Ag3PO4:W-FL samples. According to the group theory 

analysis, the cubic phase of Ag3PO4 structure presents 
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18 Raman active modes (Γ = 2 A1 + 4 E + 12 T2) 

(Trench et al., 2018; Botelho et al., 2015). The observed 

Raman bands for the prepared samples are located at 

approximately 100, 237, 539, 700, 904, and 997 cm–1. 

All these modes are related to the cubic phase of Ag3PO4 

and no Raman bands related to any secondary or W 

dopant phases were observed. The bands located at 100 

and 237 cm–1 have been assigned to the translational 

and/or rotational modes with T2 symmetry of [PO4] 

clusters. The band located at 539 cm–1 is assigned to the 

bending mode with T2 symmetry of [PO4] clusters. The 

band located at 700 cm–1 is attributed to the symmetric 

stretching mode of the [PO4] clusters. The most intense 

band located at 904 cm–1 is related to the symmetric 

stretching (A1) mode, whereas the band located at 997 

cm–1 is related to the asymmetric stretching mode (T2) 

mode of [PO4] clusters. 

 

 
Figure 2. Raman spectra of Ag3PO4:W and Ag3PO4:W-

FL samples. 

 

It can be observed that the Ag3PO4:W-FL sample 

presented a remarkable decrease of the relative intensity 

of the band at 904 cm–1 compared to the Ag3PO4:W 

sample. As observed in XRD results, the FL irradiation 

in Ag3PO4:W sample induced the formation of metallic 

Ag that arises from the reduction of Ag+ cations in the 

Ag3PO4 structure. This process generates Ag vacancies 

in the structure, which induce a local structural 

rearrangement of the adjacent [PO4] clusters. This 

rearrangement causes variations in the coordination 

parameters of the clusters, i.e., bond angles and lengths, 

thus increasing the structural disorder in the [PO4] 

clusters. The structural disorder in the clusters leads to a 

break of local symmetry that decreases the freedom 

degree of vibrational modes the [PO4] clusters, hence 

decreasing the intensity of Raman scattering. 

UV-Vis diffuse reflectance measurements were 

employed to determine the optical band gap energies of 

the prepared samples. Considering that the absorption 

spectrum of the Ag3PO4 is governed 

by indirect electronic transitions (Botelho et al., 2016), 

Fig. 3a and b show the Tauc plot (Wood and Tauc, 1972) 

for the Ag3PO4:W and Ag3PO4:W-FL samples, 

respectively. It can be observed a slight decrease in the 

band gap energy for the Ag3PO4:W-FL compared to the 

Ag3PO4:W sample, being the values of 2.53 and 2.43 

eV, respectively. As previous mentioned in Raman 

analysis, the FL irradiation in the Ag3PO4:W sample 

induced structural disorder in the [PO4] clusters due to 

the formation of Ag vacancies in the Ag3PO4 structure. 

These structural distortions induce the formation of 

intermediate energy levels within the band gap, which 

can act as electron traps, thus decreasing the band gap 

energy of the FL irradiated sample. 

 

 

 
Figure 3. Tauc plot for the Ag3PO4:W (a) and 

Ag3PO4:W-FL (b) samples. 
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The morphological aspects of the Ag3PO4:W and 

Ag3PO4:W-FL samples were investigated by FE-SEM 

analysis. Figure 4a and b shows the FE-SEM images of 

the Ag3PO4:W and Ag3PO4:W-FL samples, 

respectively, with their corresponding insets with 

magnified regions of the images. For the Ag3PO4:W 

sample, it can be observed nano- and microparticles 

with quasi-spherical shape. These morphologies are 

similar to those previously reported (Trench et al., 2018; 

2020). However, the FE-SEM image of the Ag3PO4:W-

FL sample presents smaller and agglomerated particles 

compared to the Ag3PO4:W sample. These aspects arise 

from the high local energy of the pulsed FL in the 

sample, thus inducing the fragmentation and 

coalescence of the particles. Moreover, according to 

reported works (Assis et al., 2018; C. Santos et al., 

2019) and the XRD results, the presence of 

nanoparticles on the surface of larger particles can be 

assigned to the Ag metallic nanoparticles. 

 

 
Figure 4. FE-SEM images of Ag3PO4:W (a) and 

Ag3PO4:W-FL (b) samples. 

 

The photocatalytic activity of the Ag3PO4:W and 

Ag3PO4:W-FL samples were investigated by the 

degradation of RhB under visible light irradiation. 

Figure 5a shows the degradation efficiency of both 

prepared samples and the control experiment without 

photocatalyst. As can be seen, no significant 

degradation was observed in the absence of 

photocatalyst. As previously reported, the Ag3PO4:W 

sample presents a highly photocatalytic activity for RhB 

degradation under visible light irradiation, allowing 

approximately 82.5% of RhB degradation in only 3 min 

of reaction (Trench et al., 2020). However, it was 

observed a remarkable improvement of the 

photocatalytic activity of the FL irradiated sample, 

allowing 100% of RhB degradation in 3 min of reaction. 

To further compare, the Ag3PO4:W and Ag3PO4:W-FL 

samples promoted 60.5% and 97.2% of RhB in only 2 

min of reaction. Figure 5b shows the Langmuir-

Hinshelwood plot for the pseudo first-order kinetics 

model (B. Liu et al., 2014) for both prepared samples 

and the control experiment. It was observed that the 

Ag3PO4:W-FL sample presented a rate constant (k) 3.54 

times higher than the Ag3PO4:W sample. 

 

 

 
Figure 5. Relative concentration of RhB against 

reaction time in photocatalytic experiments (a) and 

pseudo first-order kinetics plot (b) of Ag3PO4:W and 

Ag3PO4:W-FL samples. 

 

It has been demonstrated that the FL irradiation in 

Ag-containing materials induces the formation of Ag 

nanoparticles, as observed by XRD results and inferred 

by FE-SEM analysis. The formation of Ag nanoparticles 

on the surface of Ag3PO4 particles results in a 

semiconductor/metal interface. This interface has an 

important role in the photocatalytic performance of the 

Ag3PO4:W-FL sample due to the charge carrier transport 

(Koyappayil et al., 2020; Nubla and Sandhyarani, 2020; 

Silva et al., 2019; Sofi and Majid, 2019). The visible 

light irradiation photoexcites electrons from the valence 

band to the conduction band. The photoexcited electrons 
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can participate in reduction reactions with the reaction 

media, but also recombine with the holes in the valence 

band. The presence of the Ag nanoparticles on the 

Ag3PO4 surface under visible light irradiation can act as 

electron traps due to the SPR effect. Thus, the 

photoexcited electrons in the conduction band of AgPO4 

can be transferred to the Ag nanoparticles. These 

electrons in the Ag nanoparticles can perform the 

reduction reactions with the reaction media, whereas the 

holes in the valence band of Ag3PO4 can perform the 

oxidation reactions. Herewith, the electron transfer from 

the conduction band of Ag3PO4 to Ag nanoparticles 

decreases the recombination rate of the electron-hole 

pairs, hence increasing their availability to perform the 

redox reactions. These reactions can be performed 

directly with the RhB adsorbed on the particle surface 

and also indirectly by the formation of radical species. 

Moreover, as observed by Raman and UV-Vis 

results, the FL irradiation in Ag3PO4:W induced 

structural disorder in the [PO4] clusters, which generated 

intermediate energy levels within the band gap. These 

energy levels can also act as traps for photoexcited 

electrons in the recombination process, thus decreasing 

the recombination rate of the electron-hole pairs. 

Therefore, the FL irradiation in Ag3PO4:W sample 

induced the formation of Ag nanoparticles and 

intermediate energy levels that can act as electron traps, 

promoting a significant improvement of the 

photocatalytic performance of the Ag3PO4:W. 

 

4. Conclusions 
 

The FL irradiation in Ag3PO4:W sample induced the 

formation of metallic Ag and also structural disorder in 

[PO4] clusters, as observed by XRD and Raman results. 

The FE-SEM indicated the fragmentation and 

agglomeration of Ag3PO4 particles due to the high local 

energy of the pulsed laser. Further, it was observed the 

emergence of nanoparticles in the Ag3PO4 surface, 

which can be assigned to the Ag nanoparticles. The 

structural disorder in the [PO4] clusters induced the 

formation of intermediate energy levels within band 

gap, as observed by the decrease in its energy. The FL 

irradiation promoted a significant improvement of the 

photocatalytic activity of the Ag3PO4:W sample, being 

3.54 times higher than the non-irradiated sample. This 

improvement can be attributed to the SPR effect by the 

formation of Ag nanoparticles and the intermediate 

energy levels. Both can act as traps for the photoexcited 

electrons, which increase the availability of the electron-

hole pairs to perform the redox reactions with the 

reaction medium. Therefore, the FL irradiation has 

proved to be an effective method for the development of 

metal-semiconductor heterostructure and for the 

enhancement of photocatalytic properties. 
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ABSTRACT: Titanium oxide (TiO2) 

nanoparticles have been widely used and 

researched in recent years due to their wide 

application in several areas such as solar cells, 

catalysis and their chemical, non-toxic and 

electrical properties. Thus, this work aimed to 

study the catalytic potential of these 

nanomaterials through the oxidation of benzyl 

alcohol, for which TiO2 nanoparticles 

synthesized by the hydrothermal method and 

decorated with gold nanoparticles obtained by 

the Turkevich method (TiO2/Au) were used. The 

catalyst proved to be active for the catalysis of  

benzyl alcohol oxidation, with a yield of about 73% for the TiO2/Au catalyst and 1.4% for the TiO2 catalyst. Additionally, it 

was observed that the catalyst was selective, since the GC-MS and FTIR spectra showed only benzaldehyde as the final 

reaction product. The selective oxidation of alcohols is one of the most significant transformations in organic chemistry, as 

it is essential for the production of industrial intermediates. 

https://revista.iq.unesp.br/index.php/ecletica
https://revista.iq.unesp.br/index.php/ecletica
https://doi.org/10.26850/1678-4618eqj.v47.1SI.2022.p28-38
mailto:tmarantes@ufj.edu.br
http://orcid.org/0000-0002-8878-9928
http://orcid.org/0000-0002-6483-1888
http://orcid.org/0000-0001-9438-8226
http://orcid.org/0000-0003-3800-4616


Original article 

revista.iq.unesp.br 

29               Eclética Química Journal, vol. 47, special issue 1, 2022, 28-38 

ISSN: 1678-4618 

DOI: 10.26850/1678-4618eqj.v47.1SI.2022.p28-38 

1. Introduction 
 

Nanotechnology field has found great application in 

many areas, including medicine, pharmacology and 

industry, and is considered to be one of the most active 

areas in modern material research (Chen and Mao, 

2007). The increase in surface area, changes in the size 

and morphology of nanoparticles give them different 

properties, which are considered improvements when 

compared to the raw material. New properties, increased 

reactivity and potential applications in many areas of 

research such as antibacterial, antiviral, diagnostics, 

anticancer and directed to the controlled release of 

drugs, have led to a wide exploration of metallic 

nanoparticles (Bavanilatha et al., 2019). 

An important point regarding the synthesis of these 

nanostructures is the precise control of size and shape, 

since some properties are specifically linked to these 

structural characteristics (Li et al., 2021). The control of 

these characteristics, in a hydrothermal processing, can 

be obtained in the nucleation and growth processes. 

Controlling synthesis variables, such as temperature, 

concentration and time, ensures greater control over the 

characteristics of the product to be synthesized (Arantes, 

2009). 

Titanium oxide is a white solid inorganic substance 

(Abisharani et al., 2019). This semiconductor ceramic 

material has three main crystallographic structures: 

anatase, rutile and brookite, where the first two being 

most used because they are more thermodynamically 

stable (Montalvo-Quiros and Luque-Garcia, 2019). 

Furthermore, TiO2 has been applied in supercapacitors, 

replacing ruthenium oxide due to its thermal stability, 

potential oxidation strength and chemical stability. This 

material becomes even more attractive due to its high 

relative abundance, low cost and safety of use (Ali et al., 

2020; Haider et al., 2017; Kaneta et al., 2019; Reddy et 

al., 2019; Tayel et al., 2018). 

TiO2 nanoparticles maintain the macroscopic 

material characteristics such as low cost, nontoxicity 

and resistance to chemical erosion, in addition to 

presenting catalytic and photocatalytic properties that do 

not exist in the macroscopic material (Cao et al., 2015; 

S. Gupta and Tripathi, 2011; Radetić, 2013; W. Zhao et 

al., 2021). Additionally, when associated with noble 

metals such as Au, Ag and Pt, it is possible to obtain 

excellent magnetic, optical and electrical properties (Li 

et al., 2021; Srinivasan et al., 2019; Sun et al., 2017; 

Wang et al., 2021). TiO2 nanoparticles have wide 

applications in cosmetics, pharmaceuticals, skin care 

products, toothpastes, primarily to protect the skin from 

UV rays, and as a food coloring and inks (Abisharani et 

al., 2019; Ali et al., 2020; Bavanilatha et al., 2019; 

Messaddeq et al., 2019). 

Surface modification is used to provide a wide range 

of functionality to nanoparticles, in addition to 

improving their specific properties (Ozdal et al., 2019; 

Tomovska et al., 2011). Thus, the photocatalytic and 

biological properties can be improved. One of the 

methodologies for functionalization of TiO2 

nanoparticles is the use of silane coupling agents. 

Methoxy and ethoxysilanes are the most widely used 

because they are easy to handle and the by-products are 

alcohols are noncorrosive and volatile (Dalod et al., 

2017; Tomovska et al., 2011). 

In addition, another technique that allows the 

modification of the properties of a nanomaterial is the 

synthesis of other metallic nanoparticles on top of other 

nanoparticles, such as the Turkevich method, a 

technique used to produce spherical silver nanoparticles 

(Gorup et al., 2011). 

The functionalization of nanoparticles allows the 

creation of hybrid nanostructures, which offer distinct 

advantages compared to the individual components and 

can also display new properties and functions for 

practical applications. These enhanced properties arise 

from the synergy between the different components due 

to increased interactions between them. The 

components of a hybrid nanostructure may be selected 

from a wide range of materials such as fibers, enzymes, 

quantum dots, conductive polymers, organometallic 

structures, magnetic nanomaterials. These hybrid 

nanostructures have enhanced active surface area, 

excellent adsorption capacity, easy biomolecular 

conjugation, improved conductivity and electrocatalytic 

activity. Hybrid nanostructures have been used as 

nanocarriers, immunological probes for the detection of 

biomarkers, bioanalysis, catalytical, tissue growth and 

healing and energy management (Borah et al., 2021; 

Choi et al., 2021; Diez-Castellnou et al., 2021; Y. Gupta 

and Ghrera, 2021; Mitra et al., 2021; Mourdikoudis et 

al., 2021; Yang et al., 2021; Zare and Sarkati, 2021; 

Zheng et al., 2021). 

The TiO2 nanoparticles use of TiO2 nanoparticles in 

several areas of science has grown a lot in recent years. 

It is noteworthy their use in the medical area solar cells 

and photocatalysis (Ananthakumar et al., 2016; 

Kafshgari and Goldman, 2020; McNamara and Tofail, 

2017; Wu et al., 2020). In recent studies, X.-F. Zhang et 

al. (2019) concluded that TiO2 nanoparticles have their 

photocatalytic activity improved by modifying nano-

TiO2 with noble metals, obtaining conversion rates 

higher than 60% in the conversion of benzyl alcohol into 

benzaldehyde. Lin et al. (2018) also observed a high 

photocatalytic activity in lanthanide-doped TiO2 
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nanoparticles in dye degradation. Although TiO2 

nanoparticles and composite nanomaterials present high 

photocatalytic activity as explained, there is still a 

challenge regarding the use of TiO2 nanoparticles in the 

field of catalysis, especially with regard to organic 

and/or specific catalysis. 

In the present work, TiO2 nanoparticles were 

synthesized and had their surface modified with gold 

nanoparticles in order to obtain a nanomaterial with high 

catalytic activity, which was measured in benzyl alcohol 

oxidation tests, as described in this manuscript. 

 

2. Experimental 

2.1 TiO2 nanoparticles synthesis 

Titanium oxide nanoparticles were synthesized by 

the hydrothermal method through the hydrolysis of 

titanium peroxocomplex gel. This gel was synthesized 

by the reaction between titanium isopropoxide IV 

(Ti[OCH(CH3)2]4) and a solution of hydrogen peroxide 

(H2O2) 30% by volume, in a molar ration of 1:10 

Ti:H2O2, with the volume adjusted to 100 mL using 

deionized water and the solution refluxed at 80 °C for 

15 minutes, obtaining a yellow gel. A 10 g aliquot of this 

gel was added to 45 mL of deionized water and placed 

in the aluminum hydrothermal reaction, containing an 

internal Teflon beaker, placed in an oven at 140 °C for 

24 hours. After this period, the solution was oven dried, 

obtaining a pale powder. 

 

2.2 TiO2 nanoparticle surface modification with 

Au nanoparticles 

Gold dopped TiO2 nanoparticles were obtained from 

the surface modification of TiO2 nanoparticles with gold 

nanoparticles. Therefore, the reduction of gold in the 

presence of metal oxide nanoparticles was performed by 

the adapted Turkevich method (Gorup et al., 2011). In a 

beaker, 98 mL of deionized water and 0.1 g of TiO2 

nanoparticles were added, heated under magnetic 

stirring to a temperature of 90 °C. Then, 1.0 mL of 

HAuCl4 solution (0.1 mol L–1) and 1.0 mL of sodium 

citrate solution (0.3 mol L–1) were added. The mixture 

was kept under stirring and at a controlled temperature 

of 90 °C for 10 minutes. The solution was cooled to 

room temperature and the product was centrifuged and 

washed with deionized water and then dried in an oven. 

 

2.3 Benzyl alcohol oxidation tests 

To test the catalytic potential of the nanomaterials, 

catalytic tests were carried out in the oxidation reaction 

of benzyl alcohol in its derivatives in the presence of 

nanoparticles. One mL of benzyl alcohol was added 

with 0.3 g of potassium carbonate in the aluminum 

reactor with 0.005 g of TiO2/Au nanoparticles which 

was closed and left for 24 h at 160 °C in the oven. For 

comparison, the same test was performed under the 

same conditions using TiO2 nanoparticles and no 

catalyst. 

 

2.4 Characterizations 
 

Titanium oxide nanoparticles and gold doped 

titanium oxide nanoparticles were characterized by X-

ray diffraction (XRD), UV-visible spectroscopy and 

infrared spectroscopy (UV-Vis). All nanoparticles’ 

catalytic activity was investigated in the benzyl alcohol 

oxidation reaction and followed by infrared 

spectroscopy and gas chromatography coupled to mass 

spectrometer (GC-MS). 

 

3. Results 
 

It was possible to perform the synthesis of TiO2 

nanoparticles by the proposed method. X-ray analysis is 

shown in Fig. 1. The anatase peaks found at 2θ values of 

25.28, 36.94, 48.04, 53.89, 55.06, 62.11, 68.76 and 

70.30 correspond to the crystallographic planes (101), 

(103), (200), (105), (211), (213), (116) and (220), 

respectively. Rutile peaks appear at 2θ values of 27.44, 

36.08, 41.22, 44.05, 62.74, 74.40 and 76.50 correspond 

to the crystallographic planes (110), (101), (111), (210), 

(002), (320) and (202), respectively. It was determined 

that the nanostructures had 71% of the anatase 

crystallographic phase (PDF 00-021-1272) and 29% of 

the rutile crystallographic phase (PDF 00-021-1276). 

The crystallite size measured by Scherrer equation was 

15 and 27 nm for rutile phase (110 and 310) showing rod 

shape particles and 9 nm for anatase phase shown 

spherical shape (101 and 200). 

Recently, TiO2 nanomaterials have been prepared by 

different methodologies, where liquid phase processing 

stands out. The characteristics of the material are closely 

linked to the synthesis methodology (S. Gupta and 

Tripathi, 2011). It is verified in the literature the 

possibility of obtaining nanomaterials with different 

size, morphology and crystallographic phase, as it has 

been reported the obtention of 60 nm size TiO2-anatase 

nanoparticles (J. Zhang et al., 2017), 5.7 nm sized 

nanorods (Dalod et al., 2017) and even TiO2-rutile 

nanotubes sizing 20 nm in diameter (Yan et al., 2010). 
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Figure 1. TiO2 nanoparticles XRD patterns. 

 

 
Figure 2. TEM images (a) and size distribution histogram (b) for TiO2 nanoparticles. 

 

Transmission electron microscopy (TEM) images 

were able to confirm the average size 32 nm at length 

and show rod shape morphology, as seen in the Fig. 2. 

Figure 3 shows a scanning electron microscopy (SEM) 

image of the TiO2 nanoparticles, which shows a uniform 

distribution of the nanomaterial. 

TiO2 nanoparticles modified with gold (TiO2/Au) 

were also analyzed by XRD, whose diffractogram is 

shown in Fig. 4. The presence of Au nanoparticles on 

the surface of TiO2 nanoparticles is confirmed by the 

presence of peaks found at 2θ values of 32.19 and 46.12, 

corresponding to the crystallographic planes (111) and 

(200) (Beck et al., 2008; C. Zhao et al., 2006). 

 
Figure 3. SEM image of TiO2 nanoparticles. 
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Figure 4. TiO2/Au nanoparticles XRD patterns. 

 

 
Figure 5. TiO2/Au, TiO2 and Au nanoparticles UV-Vis spectra. 

 

The presence of gold nanoparticles coating the 

surface of titanium oxide nanoparticles was also verified 

by UV-Vis spectroscopy showing the Au nanoparticles 

the plasmon band at 550 nm. The presence of the 

plasmon band characteristic of gold in TiO2/Au 

nanoparticles contributes to the characterization of the 

material (Verma et al., 2020). This band formation can 

be seen in Fig. 5. 

Figure 6 shows FEG-SEM images of TiO2/Au 

nanoparticles. Although it is possible to observe the 

TiO2 nanoparticles, the spherical gold nanoparticles are 

not visible. It is believed that this was due to image 

resolution or even the low concentration or size of the 

nanoparticles. However, it is noteworthy that the other 

characterization techniques proved their presence. 

TiO2 nanoparticles were shown to be active for 

catalyzing the oxidation of benzyl alcohol, showing 

significant yield, even more so for titanium oxide 

nanoparticles coated with gold nanoparticles. Uncoated 

TiO2 nanoparticles showed a catalytic yield of 1.4% and 

gold dopped TiO2 nanoparticles showed a catalytic yield 

of 73% and this catalyst showed to be selective (> 98%), 
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converting benzyl alcohol only to benzaldehyde. 

Figure 7 shows the chromatogram of the tests’ product. 

An analysis of the precursor was also carried out under 

the same conditions to identify and determine the level 

of purity of the alcohol, since it is naturally oxidized by 

air over time. 

In addition, the mass spectrum of the species was 

also analyzed. Figure 8a shows the mass spectra of 

benzyl alcohol, as well as its characteristic 

fragmentation, showing peaks in m/z 108, 107, 91, 79, 

77 and 51, which, according to the literature and the 

equipment’s database, characterize the benzyl alcohol. 

Figure 8b shows the mass spectrum and characteristic 

fragmentation of benzaldehyde, the peaks at m/z 106, 

105, 77, 51 and 50 are also in accordance with the 

literature and characterize benzaldehyde. Figure 8c 

shows the mass spectrum and characteristic 

fragmentation of benzyl benzoate, whose peaks at 212, 

105, 91 and 77 characterize benzyl benzoate. 

 

 
Figure 6. FEG-SEM image of TiO2/Au nanoparticles. 

 
Figure 7. Chromatogram of (a) benzyl alcohol, (b) TiO2 NPs catalyzed product and (c) TiO2/Au NPs catalyzed 

product. 

 

a) 
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Figure 8. Mass spectra and characteristic fragmentations: (a) Benzyl alcohol; (b) Benzaldehyde and (c) Benzyl 

benzoate. 

 

Figure 9 shows the Fourier transform infrared 

spectroscopy (FTIR) spectra of the tests’ products, 

where the appearance of a characteristic band by the 

C=O stretch can be noticed, which also shows the 

formation of benzaldehyde. 

 

 
Figure 9. FTIR spectra for TiO2/Au NPs, TiO2 NPs 

oxidated product and pure benzyl alcohol. 

 

The Gas chromatography–mass spectrometry (CG-

MS) and FTIR spectra showed that the nanoparticles 

showed selectivity, where only the presence of 

benzaldehyde was observed as a reaction product. 

Selective oxidation of alcohols is one of the most 

significant transformations of organic chemistry since it 

is essential for industrial intermediates production, such 

as ketones, epoxides, aldehydes and acids. Previous 

reports (Conte et al., 2010; Fristrup et al., 2008), that 

supported that Au nanoparticles catalyze the oxidation 

of benzaldehyde by enhancing the formation of the 

intermediate acyl radicals, rule out the possibility that 

the supported gold–palladium catalyst used in our 

earlier work on benzyl alcohol oxidation is responsible 

for the inhibition of benzaldehyde oxidation. The only 

other component, which could prevent the further 

oxidation of benzaldehyde, is the remaining benzyl 

alcohol. In recent study, Sankar et al. (2014) 

demonstrate by chromatographic analyses of reaction 

mixtures during the initial stages of oxidation of benzyl 

alcohol; the analysis revealed that no other products 

were formed and confirm Partenheimer’s observations 

that in benzyl alcohol oxidation catalyzed by Co (III), 

benzoic acid production only begins to accelerate when 

the benzyl alcohol level in the reaction mixture falls 

below ~10%. That a very small amount of benzyl 

alcohol, present in benzaldehyde, is evidently involved 

in preventing the oxidation of benzaldehyde to benzoic 

b) 

c) 
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acid forms the premise for the more detailed studies 

presented below. The authors showed that benzyl 

alcohol was probably acting to quench free radicals 

involved in autoxidation of benzaldehyde and that 

related molecules should act similarly. 

Comparing with other authors giving in Tab. 1, it is 

noted that TiO2 nanoparticles are used for developing 

several nanostructured catalysts, mainly using them 

with noble metals. The nanomaterial synthesized in this 

work presented a conversion rate and selectivity 

superior to other works. 

 

Table 1. Catalytic performance of nanoparticles in benzyl alcohol oxidation. 
Type Catalyst Conversion (%) Selectivitya (%) Reference 

Catalysis 

Pd/TiO2 4.5 85.9 
Sun et al. (2017) 

Au@Pd/TiO2 14.3 91.6 

Au/TiO2 nanotube 23.2 > 99.0 

Verma et al. (2020) Au/TiO2 nanorod 32.5 > 99.0 

Au/TiO2 microporous 9.6 > 99.0 

Pd/TiO2 57.6 74.1 Weerachawanasak et al. (2015) 

Pt/TiO2 (anatase) 76.7 > 99.0 
Liu et al. (2017) 

Pt/TiO2 (rutile) 34.3 > 99.0 

TiO2 1.6 79.3 
Du et al. (2020) 

Pd/TiO2 39.1 70.3 

TiO2 3.0 88.0 
Nowicka et al. (2019) 

Pd/Zn/TiO2 52.0 67.0 

Photocatalysis 

TiO2 3.4 > 98.0 

X.-F. Zhang et al. (2019) Au/TiO2 16.3 > 98.0 

Pt/TiO2 32.2 > 98.0 
a Selectivity to benzaldehyde. 

 

4. Conclusions 
 

We presented herein the synthesis of a heterogeneous 

catalyst comprised of TiO2 and TiO2/Au NPs, with a 

controlled rod shape morphology and average size 

32 nm. The catalyst exhibited remarkable and efficient 

activity for the benzyl alcohol oxidation. The CG-MS 

and FTIR spectra showed that the nanoparticles showed 

selectivity, where only the presence of benzaldehyde 

was observed as a reaction product. This work provides 

great potential for the selective oxidation of alcohols 

with high activity. 
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ABSTRACT: Here, an experimental study is presented on 

the YVO4:RE (RE = Eu, Tm, and Yb/Er) nanoparticles 

synthesized by means of the microwave-assisted 

hydrothermal method. Different characterization techniques 

(X-ray diffraction, Raman and ultraviolet-visible 

spectroscopy, field emission scanning electron microscopy, 

transmission electron microscopy, and photoluminescence 

emissions) have been employed to examine the structural, 

optical, as well as its morphology and photoluminescent 

properties. The as-synthetized samples present different 

emission colors due to RE3+ ions, as well as nanosized 

spherical morphology because of synthesis method. These 

materials can be considered efficient materials for optical 

devices. 
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1. Introduction 
 

Photoluminescent (PL) materials with high quantum 

efficiency present practical applications in many 

research areas, such as optoelectronics, medicine, 

biolabels, physics, among others (Ferreira et al., 2018; 

Panayiotakis et al., 1996; Shen et al., 2010). 

Consequently, several inorganic matrices are studied, in 

which its PL property was deeply explored due to its 

host lattice composition, structure, morphology as well 

as doping and others crystal modifications (Li et al., 

2021). Ideally, these materials may present well-defined 

characteristics such as size, optical properties, and a 

wide range of emission colors (Liu et al., 2016). 

Moreover, visible-emitting phosphors can be 

achieved by doping different kinds of rare earth (RE) 

ions into lanthanide orthovanadates. The orthovanadate 

matrix absorbs in the ultraviolet region of 

electromagnetic spectrum due to ligand-metal charge 

transfer (LMCT) from the 2p orbital in O2– to the 3d 

orbital in vanadate. The YVO4 nanoparticles, as an 

example, are an ideal transparent host lattice for PL 

activators and present low toxicity in biological medium 

(Rivera-Enríquez and Fernández-Osorio, 2021). YVO4 

also presents relative low phonon energy, excellent 

thermal, mechanical, and chemical stability and high 

optical performance. Furthermore, the D2d local point 

symmetry of the eight-coordinated Y3+ ion in the 

tetragonal crystal structure (space group D4h) is an ideal 

doping site for RE3+ ions (Liu et al., 2015). For instance, 

controlled fabrication of YVO4:Eu3+ nanoparticles and 

nanowires were achieved by microwave assisted 

chemical synthesis (Huong et al., 2016). 

Several works related the doping of RE3+ ions into 

different types of inorganic matrices (Pinatti et al., 2015; 

2016; 2019a; 2019b; Yang et al., 2018). The RE 

emissions arise from the 4f–4f or 5d–4f transitions from 

the UV to near-IR range of electromagnetic spectrum. 

Also, upconverting (UC) materials are an unprecedented 

technology which consists of absorption of two or more 

lower-energy photons and subsequently emission of one 

higher-energy photon. This strategy is specially used for 

solar energy materials, bioimaging, among other 

applications. Materials composed of Yb3+/Er3+ as 

activator ions can be efficiently excited using NIR (near-

infrared) laser radiation to generate visible emission. For 

example, photostable and small YVO4:Yb/Er 

upconversion nanoparticles in water were obtained and 

presented intense upconversion emission (Alkahtani et 

al., 2021). However, many of these materials present 

poor luminescence efficiency and/or complicated 

synthesis procedure, which results in no defined or 

irregular sizes particles (Ji et al., 2021; Kshetri et al., 

2018; Sousa Filho et al., 2019; Woźny et al., 2019). 

Accordingly, in this work, we report the synthesis of 

YVO4:RE (RE = Eu, Tm, and Yb/Er) nanoparticles by 

the microwave-assisted hydrothermal (MAH) method. 

These nanoparticles were structurally characterized and 

potentially studied in terms of its PL properties. In 

addition, the structure, vibrational frequency and 

morphology are compared to rationalize the structure, 

morphology, and PL emissions. 

 

2. Experimental 
 

2.1 Synthesis 
 

One mmol of NH4VO3 (99%, Sigma-Aldrich) was 

dissolved in 40 mL of distilled water at room 

temperature under magnetic stirring until the reagent 

was completely dissolved. Additionally, 2 mmol of 

Y(NO3)3∙4H2O (99.999%, Sigma-Aldrich) was 

dissolved in 40 mL of distilled water at room 

temperature. RE(NO3)3 (RE = Eu, Tm, Yb, and Er) 

solutions were prepared by dissolving RE2O3 in aqueous 

hot solution of HNO3 and evaporating the excess of acid. 

Stoichiometric volume of RE solutions were mixed 

together with the Y solution. The amount of 5 mol% of 

Eu3+, and Tm3+; and 5 mol%Yb3+/2 mol%Er3+ were 

chosen due to previous works related to maximum PL 

emission intensity achieved. After complete dissolution 

of the reactants, the V solution was mixed with the Y 

solution to obtain YVO4 and with the Y/RE solution to 

obtain YVO4:RE nanoparticles. Subsequently, the 

mixture was stirred for 10 min, and, thereafter, it was 

transferred to the MAH system at 160 °C for 32 min, as 

it was the ideal conditions for many materials obtained 

by this methodology. The precipitates formed were 

collected at room temperature, washed with distilled 

water until the pH was neutralized, and dried in a 

conventional furnace at 60 °C for 12 h. Figure 1 shows 

a representation of the synthesis procedure herein 

described. 
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Figure 1. Schematic representation of synthesis procedure of the nanoparticles. 

 

2.2 Characterizations 
 

The nanoparticles were structurally characterized by 

X-ray diffraction (XRD) patterns using a D/Max-

2000PC diffractometer Rigaku (Japan) with Cu Kα 

radiation (λ = 1.5406 Å) in the 2θ range from 10° to 80° 

in the normal routine, with a scanning velocity of 2° 

min–1. This unit cell was modelled using the 

visualization for electronic and structural analysis 

(VESTA) program (Momma and Izumi, 2008; 2011), 

version 3. Micro-Raman spectroscopy was conducted 

on a Horiba Jobin-Yvon (Japan) spectrometer charge-

coupled device detector and argon-ion laser (Melles 

Griot, United States) operating at 532 nm with a 

maximum power of 200 mW. The ultraviolet-visible 

spectrophotometry (UV-vis) spectra were taken using a 

spectrophotometer (model Cary 5G) (Varian, USA) in 

diffuse-reflectance mode. Morphological analysis of the 

particles was recorded via field-emission scanning 

electron microscopy (FE-SEM) using a Carl Zeiss 

microscope (model Supra 35) operated at an 

accelerating voltage of 30 kV and a working distance of 

3.7 mm. Transmission electron microscopy (TEM) and 

high-resolution transmission electron microscopy 

(HRTEM) analysis was performed using a Jeol JEM-

2100F with a field-emission gun (FEG) operating at 200 

kV. For the micrographs, the samples (approximately 

1 mg) were dispersed in 3 mL of distilled water and kept 

15 min in the ultrasound bath. Then, one drop of the 

suspension was deposited on a silicon wafer, dried at 

room temperature and finally attached to a sample stub 

using carbon tape for FE-SEM analysis; and one drop of 

the suspension was deposited on the cupper grid and 

dried at room temperature for TEM analysis. 

Photoluminescence (PL) measurements were performed 

by two distinct equipment. In the first one, the samples 

were excited by a 355 nm laser (Cobolt/Zouk) focused 

on a 20 µm spot, 50 µW of power. The backscattered 

luminescence was dispersed by a 20 cm spectrometer 

with the signal detected by a charged coupled device 

detector (Andor technologies). In the second one, the PL 

spectra were carried out with 325 nm excitation source 

of a krypton ion laser (Coherent Innova) and 200 mW 

laser output, at monochromator Thermal Jarrel-Ash 

Monospec and a Hamamatsu R446 photomultiplier. All 

measurements were performed at room temperature. 

 

3. Results and discussion 
 

3.1 X-ray diffraction patterns 
 

Figure 2 shows the XRD patterns of YVO4:RE, and 

all the diffraction peaks can be readily indexed to the 

pure tetragonal YVO4 phase (PDF No. 17-0341) 

(Rivera-Enríquez and Fernández-Osorio, 2021; Yu et 

al., 2002). The intense and sharp peaks confirm the 

samples are pure and present high crystallinity, as well 

as structural long-range order. Also, Y3+ site is an ideal 

environment with a D2d point symmetry for RE emitter. 

So, effectively Y-by-RE substitution occurs in the host 

lattice because RE3+ and Y3+ have similar ionic radius, as 

widely reported by many works (Matos et al., 2016; 

Rivera-Enríquez and Fernández-Osorio, 2021). This 

substitution was not perceived on the XRD patterns due 

to the limitation of detection of the XRD instrument. 

A representation of the unit cell for the orthorhombic 

YVO4:RE nanoparticles are presented in Fig. 3. This 

unit cell was modelled using the lattice parameters and 

atomic positions, as well as the possible RE-by-Y 

substitution. The Y/RE coordination environment is a 

distorted dodecahedral [YO8]/[REO8] clusters, while V 

is a distorted tetrahedral [VO4] cluster. 

 

Y(NO3)3.4H2ONH4VO3
160 °C 
32 min

60 °C 
12h 

3x H2O
3x Ethanol

80% volume 
10 min stirring

RE(NO3)3 

RE = Eu, Tm, Yb, and Er
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Figure 2. X-ray diffraction patterns of the YVO4:RE 

nanoparticles. 

 

 
Figure 3. Unit cell representation of YVO4:RE 

nanoparticles. Gray, blue, and yellow balls are Y/RE, V 

and O atoms, respectively. 

 

3.2 Raman spectroscopy 
 

Figure 4 shows the room temperature Raman spectra 

of YVO4:RE nanoparticles excited by a green laser. 

Experimentally, seven active Raman modes were 

observed at 155, 260, 367, 482, 796, 820, and 874 cm–1 

for the YVO4, YVO4:5Eu, and YVO4:5Tm samples. For 

the YVO4:5Yb/2Er, six active Raman modes were 

observed at 328, 402, 638, 796, 818, and 871 cm–1. Also, 

the YVO4:5Yb/2Er nanoparticle present a broad PL 

emission, as observed in the Raman spectra, due to the 

Yb/Er ions. These results confirm the structural short-

range order of all samples (Jayaraman et al., 1987). 

 

 

 
Figure 4. Raman spectra of the (a) YVO4:RE (RE = Eu 

and Tm), and (b) YVO4:5Yb/2Er nanoparticles. 

 

3.3 UV-vis spectroscopy 
 

Figure 5 illustrates the UV-vis diffuse reflectance 

spectra of the YVO4:RE nanoparticles in the range of 

275–750 nm. The samples showed absorption in the 

ultraviolet region at approximately 450 nm. The 

absorption is a result of electronic transition between the 

valence band (VB) formed predominantly by O 2p state, 

and the conduction band (CB) composed mainly by V 

3d states (Yang et al., 2018). Also, the YVO4:5Tm 

sample present the 3H6→3F3 transition, and the 

YVO4:5Yb/2Er present the 4I15/2→2HJ
 (J = 11/2 and 9/2) 

transitions. 
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Figure 5. The UV-vis diffuse reflectance spectra of the 

YVO4:RE nanoparticles. 

 

The band gap energy (Egap) values were calculated 

using the relation of the Kubelka–Munk and Wood Tauc 

function, as previously reported (Pinatti et al., 2019a), 

and it was obtained by linear extrapolation of the UV-

vis curve in the [F(R∞)hʋ]n
 versus hʋ graph. F(R∞) is the 

Kubelka–Munk function, hʋ is the photon energy, and n 

is a constant related to the type of electronic transition 

of a semiconductor (n = 0.5 for direct allowed, n = 2 for 

indirect allowed, n = 1.5 for direct forbidden, and n = 3 

for indirect forbidden). The theoretical calculation 

predicts a direct allowed transition for YVO4. Thus, the 

Egap values obtained were 3.54, 3.41, 3.46, and 3.39 eV 

for the YVO4, YVO4:5Eu, YVO4:5Tm, and 

YVO4:5Yb/2Er samples, respectively (Fig. 6). These 

results show that the Egap values decrease due to 

insertion of the RE ions, indicating that the degree of 

order-disorder at electronic level were affected due to Y-

by-RE substitution. This behavior was previously 

observed in other RE doped materials and is attributed 

mainly by the contribution of 4fn electrons of RE3+ ions 

either to the VB or CB, which can increase the covalent 

bonding of V−O and reduce the Egap. This happens 

because the energy level of RE3+ ions matches the 

energy level of VO4
3-, contributing to an effective 

energy transfer from the VO4
3– to the excited states of 

RE3+ ions (Yang et al., 2018). 
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Figure 6. Band gap energy (Egap) for the YVO4:RE 

nanoparticles.  

 

3.4 Field-emission scanning electron microscopy 

and TEM 
 

The detailed morphology and particle size of YVO4 

nanoparticles were assessed by FE-SEM, and the 

nanostructures were further characterized by TEM and 

HRTEM. Field emission scanning electron microscopy 

micrographs of the YVO4 nanoparticles are shown in 

Fig. 7a and b. It is clearly seen spherical nanoparticles 

which exhibit a high degree of homogeneity in the shape 

and size. As shown in Fig. 7a and b, the particles present 

smooth surface, well-defined shape, and are mainly 

aggregated with a monodisperse size distribution. 

Figure 7c shows the TEM image of YVO4 

nanoparticles. It was mainly observed spherical-like 

particles of sizes ranging from 20 to 50 nm. Most of 

them have perfect circular morphology, while other 

present small deformations. Figure 7d shows the 

HRTEM image of YVO4 nanoparticles. The YVO4 

nanoparticles presented a single crystalline nature and 

the lattice spacing was calculated to be 0.363 nm 

between two adjacent lattice fringes, which could be 

indexed to 200 planes of zircon-type YVO4. This is in 

agreement with the XRD results (Shen et al., 2010). 

Moreover, the other YVO4:RE samples also showed 

similar morphology and as single-crystalline and this 

can be attributed to the similar preparative conditions 

and the low dopant concentration of RE3+ ions (data not 

shown). 

These results confirm that nanosized YVO4 of 

spherical morphology can be obtained by the MAH 

method at short reactional time and low temperature. 

Moreover, this morphology, as well as the size, are 

effectively acquired without the use of surfactants, 

templates, organic solvents, or adjustment of pH value 

of the medium, which is usually required to obtain 

homogeneous and nanosized particles. 
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Figure 7. (a, b) FE-SEM images, (c) TEM image, and 

(d) HRTEM image of YVO4 nanoparticles. 

 

3.5 Photoluminescence spectroscopy 
 

Figure 8 shows the PL emission spectra at room 

temperature of YVO4:RE nanoparticles under the 

excitation wavelength of 355 nm. Figure 8a shows the 

PL emission spectra of YVO4:RE (RE = Tm, and Yb/Er) 

nanoparticles, presenting an intense band at 540 nm due 

to VO4
3– clusters (Jin et al., 2011), and the YVO4:5Tm 

nanoparticles also present the 3H4→3H6 transition at 806 

nm. Particularly, the YVO4:Eu nanoparticles present 

intense 5D1→7FJ
 (J = 1 and 2) and 5D0→7FJ (J = 1–4) 

transitions, which arises due to the efficient energy 

transfer from VO4
3– clusters to the Eu3+ ions (see Fig. 

8b) (Matos et al., 2016; Pinatti et al., 2019a; Saltarelli et 

al., 2014). 

 

 

Figure 8. Photoluminescent emission spectra of (a) 

YVO4:RE (RE = Tm and Yb/Er), and (b) YVO4:5Eu 

nanoparticles. 

 

Figure 9 shows the PL emission spectra at room 

temperature of YVO4:RE nanoparticles under the 

excitation wavelength of 325 nm, as well as the CIE 

chromatic diagram. Figure 9a shows the PL emission 

spectra of the YVO4:5Eu nanoparticles, which presents 

characteristic Eu3+ peaks at 543, 564, 595, 622, 655, and 

705 nm ascribed to the 5D1→7FJ (J = 1 and 2), and 
5D0→7FJ (J = 1–4) transitions, respectively (Almeida et 

al., 2021; Pinatti et al., 2015). Figure 9b shows the PL 

emission spectra of the YVO4:5Tm nanoparticles, which 

present characteristic Tm3+ peaks at 480, 548, 650, and 

795 nm related to the 1D2→3FJ
 (J = 4 and 5), 1G4→3F4, 

and 3H4→3H6 transitions, respectively (Pinatti et al., 

2019a). Figure 9c shows the PL emission spectra of the 

YVO4:5Yb/2Er nanoparticles, which present 

characteristic Er3+ peaks at 530, 555, and 671 nm 

attributed to the 2H11/2→4I15/2, 4S3/2→4I15/2, and 
4F9/2→4I15/2 transitions, respectively (Alkahtani et al., 

2021; Mahata et al., 2015; Sun et al., 2006; Woźny et 

al., 2018; Zhang et al., 2010). Figure 9d shows the CIE 

chromatic diagram and the respective positions of x, and 

y coordinates of the YVO4:RE (RE = Eu, Tm, and 

Yb/Er) nanoparticles obtained through the PL emission 

spectra. The (x;y) chromatic coordinates positions are 

listed in Tab. 1. The YVO4:5Eu, YVO4:5Tm, and 

YVO4:5Yb/2Er nanoparticles present intense emitting 

color in the red, blue, and green region of the diagram, 

respectively. These results confirm the pureness and 

brightness of the samples and can be considered as 

optimum materials for optical devices. 
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Figure 9. Photoluminescent emission spectra of (a) YVO4:5Eu, (b) YVO4:5Tm, (c) YVO4:5Yb/2Er nanoparticles, 

and (d) CIE chromatic diagram. 

 

Table 1. Chromatic coordinates values obtained by the 

PL emission spectra of the YVO4:RE nanoparticles. 

Samples 
Chromatic coordinates 

x y 

YVO4:5Eu 0.65 0.34 

YVO4:5Tm 0.36 0.29 

YVO4:5Yb/2Er 0.33 0.53 

 

Figure 10 shows a schematic energy level diagram 

and a proposed energy transfer mechanism for the 

YVO4:RE nanoparticles. For the YVO4:5Eu 

nanoparticles, it is observed that, under excitation at 325 

nm, electrons are excited from VB into the charge 

transfer state (CTS) of the VO4
3− clusters. Then, the 

excitation energy is transferred from the VO4
3− group to 

the 5D4 level of Eu3+ cations. Afterwards, Eu3+ cations in 

the populated 5D4 level undergo multiphonon relaxation 

to the 5D1 level that radiatively decay to the 7FJ (J = 1 

and 2) levels; and to the 5D0 level that radiatively decay 

to the 7FJ (J = 1–4) levels. For the YVO4:5Tm 

nanoparticles, the excitation energy is transferred from 

the VO4
3− group to the 3P2 level of Tm3+ cations. Then, 

Tm3+ cations in the populated 3P2 level undergo 

multiphonon relaxation to the 1D2 level that radiatively 

decay to the 7F4 and 3H4 levels; and to the 1G4 level that 

radiatively decay to the 7F4 and 3H6 levels. Finally, for 

the YVO4:5Yb/2Er nanoparticles, the excitation energy 

is transferred from the VO4
3− group to the 4F7/2 level of 

Er3+ cations. Then, Er3+ cations in the populated 4F7/2 

level undergo multiphonon relaxation to the 2H11/2 and 
4S3/2 levels that radiatively decay to the 4I15/2 level; and 

to the 4F9/2 level that radiatively decay to the 4I15/2 level. 

Alternatively, according to the energy conservation law, 

a two-photon process can occur and populate the green 

and red UC emissions of Er3+ ions. The successive 

energy transfers are: 4I15/2 (Er3+) + 2F5/2 (Yb3+) → 4I11/2 

(Er3+) + 2F7/2 (Yb3+) and 4I11/2 (Er3+) + 2F5/2 (Yb3+) → 4F7/2 

(Er3+) + 2F7/2 (Yb3+) excite Er3+ ions to the 4F7/2 state. Er3+ 
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ions at the 2H11/2/4S3/2 states, arising from the 

nonradiative relaxation (NR) process of the 4F7/2 state, 

radiatively decay to the 4I15/2 state, resulting the green 

UC emissions. The 4F9/2 red emitting state is populated 

by the process: 4I13/2 (Er3+) + 2F5/2 (Yb3+) → 4F9/2 (Er3+) + 
2F7/2 (Yb3+), where the 4I13/2 state is populated by NR 

process of the 4I11/2 state (Ji et al., 2021). 

 

 
Figure 10. Schematic energy level diagram and a proposed energy transfer mechanism for the YVO4:RE 

nanoparticles. Solid arrows = radiative transition, dashed arrows = energy transfer, and dotted arrows = nonradiative 

transition. 

 

4. Conclusions 
 

In summary, we reported the efficient synthesis of 

YVO4:RE nanoparticles by the microwave-assisted 

hydrothermal method. Long-range order was confirmed 

by XRD patterns, which showed sharp and well-defined 

peaks with no segregated materials. Vibrational Raman 

modes observed represent a signature of the structural 

organization in the short-range. The UV-vis spectra 

indicate that the band gap value decreases due to RE 

doping attesting structural order-disorder of the 

materials. The FE-SEM, TEM, and HRTEM images 

prove that the materials are spherical and in the 

nanoscale size. Photoluminescent emission spectra 

present transitions in the red, blue, and green regions, 

attesting these materials as good phosphors in the visible 

region. Also, the YVO4:5Yb/2Er is a good candidate as 

promising material for UC phosphor. 
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ABSTRACT: Quantum chemistry methods were 

used to study boron nitride and carbon nanotubes as 

possible carriers of antichagasic benznidazole to 

improve their water solubility and bioavailability. 

Structurally, no significant changes were observed in 

both nanotubes throughout the encapsulation process. 

For the BNZ@BNNT complex, it was possible to 

notice short interactions, at 0.215 nm, between the 

hydrogen atoms of the BNZ and the nitrogen atoms of 

the BNNT. The binding energy reveals that both 

nanotubes are capable of encapsulating BNZ in an 

aqueous medium, with values of –71.79 and –62.68  

kcal/mol for the BNZ@BNNT and BNZ@CNT complexes. The enthalpy of solvation indicates that the complexes are soluble 

in water with values of –32.35 and –28.76 kcal mol–1 for the BNZ@BNNT and BNZ@CNT complexes. Regarding chemical 

stability, Eg and η show that BNZ@BNNT has greater stability (Eg/η of 3.35/1.68 eV) than BNZ@CNT (0.16/0.08 eV). 

Overall, our results demonstrate that BNNT is a better candidate to be used as a carrier of BNZ than CNT due to its greater 

structural and chemical stability. 
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1. Introduction 
 

Chagas disease is caused by the protozoan 

Trypanosoma cruzi, which is transmitted mainly by the 

hematophagous vector insect popularly known as 

kissing bug. This insect belongs to the order Hemiptera 

and family Reduviidae and it is usually found around 

rock and wood piles and in cracks and gaps of walls and 

roofs, for instance. This disease is mainly transmitted by 

the bite of the kissing bug, but it can also be transmitted 

by blood transfusion and congenital transmission. Some 

of the efficient ways that have been widely used to 

control Chagas disease are environmental control and 

application of insecticides. 

Although this disease was discovered in 1909 by the 

sanitary physician Carlos Chagas, until nowadays there 

are only two drugs that can treat it: benznidazole and 

nifurtimox. However, both drugs have low efficiency 

and strong side effects (Coura and Castro, 2002) 

presenting an inhibitory activity only in the acute phase 

of the disease. Additionally, in Brazil, the 

commercialization of the drug nifurtimox is prohibited 

(Fairlamb, 1999). It must be emphasized that, according 

to data obtained from the World Health Organization 

(WHO), Chagas disease still causes approximately 

10,000 deaths per year. Although benznidazole is still in 

use, it has some limitations such as low water solubility 

and low permeability. Therefore, high doses of this drug 

are required to achieve therapeutic efficacy, which 

consequently increases its toxicity and side effects. A 

strategy commonly adopted in the literature to overcome 

these limitations is the use of encapsulating agents, 

which has been used as drug carriers of antichagasic 

drugs, such as nanoemulsions (E. Oliveira et al., 2017; 

Streck et al., 2019; Vermelho et al., 2018), polymeric 

nanoparticles (Seremeta et al., 2019; Silva et al., 2019), 

liposomes (Morilla et al., 2002; Vinuesa et al., 2017) 

and cyclodextrins (Lyra et al., 2012; Melo et al., 2013; 

Soares Sobrinho et al., 2011) among others. 

Even though carrier agents are efficient, the 

elaboration and development of new nanocarriers have 

a high experimental cost. Computational chemistry then 

emerges as a relatively low-cost tool to assist 

researchers in the optimization of experiments, reducing 

operating costs. In this sense, O. Oliveira and Viegas 

(2020), recently used computational chemistry methods 

to show that cucurbit[7]uryl is a possible new carrier 

agent of benznidazole. Carbon nanotube (CNT) is 

another class of nanocarriers that have been extensively 

studied over the past two decades. In addition to their 

electrical and optical properties (Rathod et al., 2019), 

CNTs are also inert and chemically stable (Anzar et al., 

2020), which increases their potential application in 

drug delivery. For such reasons, CNTs have been used 

as drug carriers in the treatment of different diseases 

(Wang and Moriyam, 2011). Another nanotube of great 

interest is the boron nitride nanotube (BNNT). Despite 

having similar properties, CNTs are metallic or 

semiconductor, while BNNTs are electrically insulating 

(Kim et al., 2018). Like CNTs, BNNTs have also been 

widely used in drug delivery (Ciofani, 2010). Regarding 

the toxicity, the BNNTs are nontoxic and 

biocompatible, while possible cytotoxicity of CNTs 

have been observed (Dehaghani et al., 2020). 

From a theoretical point of view, quantum chemistry 

methods have been adopted to study the encapsulation 

of different drugs in these nanotubes. For example, both 

CNT and BNNT have been used to encapsulate 

anticancer (Azarakhshi et al., 2021; Mahdavifar and 

Moridzadeh, 2014; Shayan and Nowroozi, 2018; Zaboli 

et al., 2020) and anti-HIV (Xu et al., 2018) drugs, 

among others. Recently, CNT (10,10) was used to 

encapsulate 1,4-dihydropyridine derivatives (Dutra et 

al., 2017) using the density functional theory. In another 

study, pure and silicon-doped BNNT (12,0) were 

employed to adsorb sarin (Santos et al., 2020). In the 

present work, we propose the use of quantum chemistry 

methods to study the encapsulation of benznidazole in 

CNT and BNNT nanotubes in zigzag form (14,0) aiming 

to improve its bioavailability in the body. It should be 

noted that until the present moment the use of these 

nanotubes for the encapsulation of such antichagasic 

agent has not been reported in the literature. 

 

2. Materials and Methods 
 

The BNNT and CNT zigzag models (14.0) with 

diameters of 11.78 and 11.06 Å, respectively, were used 

as a model vehicle to study the BNZ@BNNT and 

BNZ@CNT complexes. The BNNT and CNT structures 

were generated using a script (see Supplementary 

Material S1) with chiral vectors m (18) and n (0) and 

length of 18.06 and 17.83 Å, respectively. To avoid the 

effects caused by the ends of the nanotubes, both ends 

of each nanotube were hydrogenated (Fig. 1). In order 

to construct the molecular geometry of the 

BNZ@BNNT and BNZ@CNT complexes, a 

translational script was used to center the BNZ inside 

the nanotubes (Supplementary Material S2). The 

molecular geometry of the BNZ was built through its 

internal coordinates, considering bond length, bond 

angle and twist angle. This information was later 

converted into Cartesian coordinates with the aid of the 

Molden (Schaftenaar and Noordik, 2000), which is a 

free code package for structural visualization. 
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Figure 1. Optimized structures with the DFT-

GD3//B3LYP/6-31G(d) method. Oxygen in red, carbon 

in grey, hydrogen in white, nitrogen in blue, and boron 

in salmon. 

 

The models (BNNT, CNT and BNZ) and the 

complexes (BNZ@BNNT and BNZ@CNT) were 

initially optimized with the PM7 Hamiltonian using the 

MOPAC2016 program (Stewart, 2016). Subsequently, 

the structures with minimum energies were reoptimized 

through DFT, with B3LYP hybrid functional and 6-

31G(d) basis function (Rassolov et al., 2001). This 

theory level was chosen to balance the computational 

cost and quality of results. The dispersion interaction 

correction was taken into account by employing the 

Grimme method (GD3) (Grimme et al., 2010). The 

stationary points were characterized as a minimum point 

of energy through harmonic vibrational states, whose 

imaginary frequencies were not observed. DFT 

calculations were performed in vacuum and in solvent 

medium (H2O) using the PCM method (Scalmani and 

Frisch, 2010) for the dielectric constant of H2O and the 

Gaussian 09 computational package. The natural orbital 

bonding (NBO) method (Reed et al., 1985) was used to 

calculate atomic charges. The binding energy (Ebind) and 

the enthalpy of solvation (Hsolv) of the complexes in 

vacuum and in solvent medium were calculated using 

Eqs. 1 and 2, respectively. 

𝐸𝑏𝑖𝑛𝑑 = 𝐸𝑁𝑇−𝐵𝑁𝑍 − (𝐸𝑁𝑇 + 𝐸𝐵𝑁𝑍) (1) 

𝐻𝑠𝑜𝑙𝑣 = 𝐸𝑁𝑇−𝐵𝑁𝑍−𝑠𝑜𝑙𝑣 − 𝐸𝑁𝑇−𝐵𝑁𝑍−𝑣𝑎𝑐𝑐𝑢𝑚 (2) 

where ENT-BNZ is the total energy of the complexes 

(BNZ@BNNT and BNZ@CNT), considering the 

calculations for the vacuum and the solvent medium, 

ENT is the total energy of the studied nanotubes (BNNT 

and CNT), EBNZ is the total energy of the BNZ molecule 

and ENT-BNZ-solv are the total energies of the complexes 

obtained in the solvent and gas phases, respectively. 

 

3. Results and discussion 
 

The encapsulation of BNZ in the BNNT (14.0) and 

CNT (14.0) was investigated herein using theoretical 

methods to obtain a new drug delivery system to be used 

in Chagas disease. Figure 1 presents the most stable 

geometries obtained for the studied models in aqueous 

media, using the dielectric constant of water for taking 

into account the solvent medium. 

As it can be seen in Fig. 1, no significant structural 

change was observed in the BNNT and CNT after the 

encapsulation process. The main structural differences 

found in the BNZ molecule are in agreement with the 

lower root mean square deviation values (RSMD) 

(< 0.765 nm), which were calculated from the 

superposition between the unencapsulated and 

encapsulated BNZ molecule. For the formed complexes, 

it was possible to observe hydrogen interactions of the 

order of 0.215 nm between the hydrogen atoms present 

in the BNZ molecule and the nitrogen atoms from the 

BNNT nanotube. These interactions provided great 

stability to the BNZ@BNNT complex when compared 

to the BNZ@CNT, which is in accordance with the 

results in Tab. 1, that were calculated from Eq. 1. 

To better understand the energetic processes 

involved in the encapsulation process, the electronic 

structures for the model vehicles, as well as for the 

formed complexes, are presented and discussed. The 

electronic properties were used to clarify the interaction 

between the BNZ molecule and the inner surface of the 

BNNT and the CNT model vehicles. The reactivity 

parameters were based on the energies of molecular 

orbitals occupied with the highest energy (HOMO, 

EHOMO) and those unoccupied with the lowest energy 

(LUMO, ELUMO). According to the Koopmans’ theorem 

(Koopmans, 1934), the ionization potential (IP) is the 

negative of the HOMO energy (-EHOMO), while the 

electron affinity (EA) can be approximated by the 

negative of the LUMO energy (–ELUMO). The energy gap 

is another property obtained from the energies of EHOMO 

and ELUMO, being defined as the absolute difference 

(|EHOMO – ELUMO |). Table 1 summarizes the electronic 

properties obtained in our calculations. 
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Table 1. Electronic properties obtained from DFT-GD3//B3LYP/6-31G(d) calculations. 

Compounds 
Ebind 

kcal/mol 

Hsolv 

kcal/mol 

EHOMO 

eV 

ELUMO 

eV 
Eg eV IP eV EA eV 

Dipole 

Debye 

BNZ/(vacuum) - 
–12.72 

–7.04 –2.52 4.52 7.04 2.52 7.81 

BNZ/(solvent) - –6.72 –2.71 4.01 6.72 2.71 9.98 

BNNT/(vacuum) - 
–28.19 

–6.37 –0.29 6.08 6.37 0.29 23.81 

BNNT/(solvent) - –6.28 –0.37 5.91 6.28 0.37 31.99 

CNT/(vacuum) - 
–10.41 

–3.80 –3.64 0.16 3.80 3.64 0.09 

CNT/(solvent) - –3.82 –3.66 0.16 3.82 3.66 0.10 

BNZ@BNNT/(vacuum) –80.36 
–32.35 

–6.29 –2.96 3.33 6.29 2.96 19.38 

BNZ@BNNT/(solvent) –71.79 –6.26 –2.91 3.35 6.26 2.91 23.44 

BNZ@CNT/(vacuum) –69.05 
–28.76 

–3.80 –3.64 0.16 3.80 3.64 0.16 

BNZ@CNT/(solvent) –62,68 –3.83 –3.67 0.16 3.83 3.67 7.10 

 

Table 2. Quantum molecular descriptors were obtained through the reactivity parameters EHOMO and ELUMO using 

DFT-GD3//B3LYP/6-31G(d) calculations. 
Compounds μ eV χ eV η eV ω eV S eV 

BNZ (vacuum) –7.48 7.48 2.26 4.84 0.22 

BNZ (solvent) –4.72 4.72 2.01 1.82 0.25 

BNNT (vacuum) –3.33 3.33 3.04 0.89 0.16 

BNNT (solvent) –3.33 3.33 2.96 0.91 0.17 

CNT (vacuum) –3.72 3.72 0.08 3.49 6.25 

CNT (solvent) –3.74 3.74 0.08 3.51 6.25 

BNZ@BNNT 

(vacuum) 
–4.63 4.63 1.67 2.23 0.25 

BNZ@BNNT (solvent) –4.59 4.59 1.68 2.19 0.30 

BNZ@CNT (vacuum) –3.72 3.72 0.08 3.49 6.25 

BNZ@CNT (solvent) –3.75 3.75 0.08 3.52 6.25 

 

In addition, quantum molecular descriptors can be 

used to better understand the interactions between BNZ 

and the model vehicles. For this, the global hardness (η), 

electronegativity (χ), electronic chemical potential (μ), 

electrophilicity index (ω) and softness chemistry (S) 

were calculated from Eqs. 3–7, respectively 

(Koopmans, 1934; Lobo et al., 2020; Serhan et al., 

2020; Sheikhi et al., 2018). For instance, μ measures the 

evasion affinity of a molecule from chemical 

equilibrium, η measures the charge transfer and the 

chemical reactivity of a molecule, χ is the capacity of a 

molecule to attract electrons, and ω is the electrophilic 

power of a molecule. Furthermore, the stability of 

molecular systems is related to hardness (η), which is a 

tool to understand chemical reactivity (Khaleghian and 

Azarakhshi, 2019). All these quantum descriptors are 

displayed in Tab. 2. 

𝜂 =
𝐼−𝐸𝐴

2
 (3) 

𝜒 =
𝐼+𝐸𝐴

2
 (4) 

𝜇 =
−𝐼+𝐸𝐴

2
 (5) 

𝜔 =
𝜇2

2
 (6) 

𝑆 =
1

2𝜂
 (7) 

As shown in Tab. 2, the global hardness value (η) for 

the BNNT is 3.04 eV in vacuum and 2.96 eV in solvent 

medium. However, after the formation of the 

BNZ@BNNT complex, these values change to 1.67 eV 

in vacuum and 1.68 eV in solvent medium, i.e., the η 

value of the BNNT decreases as it interacts with the 

BNZ molecule. These values are greater than those for 

the BNZ@CNT system, where the η value is practically 

unchanged (Tab. 2). This is in agreement with the 

energy of formation of the complexes, as shown in 

Tab. 1. The electrophilicity index (ω) calculation 

reveals that the BNZ@BNNT has higher values than the 

BNZ and isolated BNNT in the solvent phase, thus 

implying that this complex has a better electrophilic 

characteristic. Nevertheless, when comparing both 

complexes, it is possible to observe that, in aqueous 

media, the BNZ@CNT (3.52 eV) acts as an electrophile 

due to its high ω value in comparison with the 

BNZ@BNNT (2.19 eV). In contrast, the lower value of 

electronegativity (χ) of the BNZ@CNT (3.75 eV) 
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compared to the BNZ@BNNT (4.59 eV) shows that it 

acts as a nucleophile in solvent phase. The same 

conclusion can be reached using the μ and η descriptors, 

being the electrophile characterized by a high value of μ 

and a low value of η, whereas the opposite is true for the 

nucleophile. 

The dipole moment values of the model vehicles are 

altered according to the interaction between the BNZ 

molecule and their internal surfaces (Tab. 1). The 

change in dipole moment after interaction indicates a 

charge transference between the BNZ molecule and the 

BNNT and CNT model vehicles. For better visualization 

of this process, Fig. 2 illustrates the molecular 

electrostatic potential (MEP) for the studied 

compounds. 

 

 
Figure 2. Representation of the molecular electrostatic 

potential (MEP, in eV) of the BNNT and CNT model 

vehicles, and the BNZ molecule. For MPE, the negative 

and positive charges range from red to blue, respectively 

(for interpretation of the color references in this legend, 

please refer to the web version of this article). 

 

As it can be seen in Fig. 2, charge transfers can be 

evidenced by the modification in the MEP after the 

formation of the BNZ@BNNT and BNZ@CNT 

complexes. Therefore, according to Tabs. 1 and 2, this 

transfer process is very important to improve the 

electronic properties of the studied nanotubes. 

4. Conclusions 
 

Chags disease, caused by the protozoan 

Trypanosoma cruzi, was discovered in 1909 by Carlos 

Chagas. Although this disease is responsible for nearly 

10.000 deaths per year worldwide, there is only one 

effective drug against it: benznidazole (BNZ). However, 

it has low water solubility and low bioavailability in the 

organism. Therefore, herein we used quantum chemistry 

methods to characterize two nanotubes (BNNT and 

CNT) to be used as carrier agents for the BNZ. The 

optimized structures of the complexes showed that the 

presence of BNZ inside the nanotubes did not alter their 

structural form, which is desired in drug delivery. The 

binding energy (Ebind) revealed that the BNNT and CNT 

are able to encapsulate BNZ with Ebind values of –71.79 

and –62.68 kcal mol–1 for the BNZ@BNNT and 

BNZ@CNT complexes, respectively, in aqueous media. 

The solvation enthalpy of –32.35 and –28.76 kcal mol–1 

for the BNZ@BNNT and BNZ@CNT complexes, 

respectively, indicated that they are soluble in water. 

Additionally, the energy gap (Eg) and global hardness 

(η) showed that the BNZ@BNNT presents higher 

stability, with (Eg/η) value of 3.35/1.68 eV against 

0.16/0.08 eV for the BNZ@CNT. The electrophilicity 

index (ω) and electronegativity (χ) values indicated that 

the BNZ@BNNT and BNZ@CNT act as nucleophile 

and electrophile, respectively, in aqueous media. 

Finally, the present results demonstrate that the BNNT 

is a better candidate to be used as a carrier agent for BNZ 

than the CNT due to its higher chemical stability, lower 

binding energy and lower solvation enthalpy. 
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S1. Script to generate cartesian coordinates for BNNT and CNT models. 

#!/bin/bash  

#UEG - UnUCET - Nanotubos das formas [(XY)n]m, com n e m PARES E IMPARES  

#FORMA ZIG-ZAG ou BARCO  - v.08  

#Dr. José Divino dos Santos e MsC.Jeziel Rodrigues   

#como execultar: ./shell-nano-otim-xy-par-impar.sh $1 $2 $3 $4 $5 $6 $7 $8 $9 

$10 $11 $12 $13 $14   

  

pi=` echo "scale=10;4*a(1)"|bc -l ` 

n0=$1        #Numero de atomos na base  GaAs, ZnO, C, BN ...  

m=$2         #Numero de niveis do nanotubo  

d=$3         #distancia X-X  

tipo=$4      #tipo de crescimento - zig ou bar 

atomo1=$5    #Simbolo atomico 1 

atomo2=$6    #Simbolo atomico 2 

metodo=$7    #Metodo semiempirico - MNDO, AM1, PM3 

multi=$8     #Multiplicidades - SINGLET, DOUBLET, TRIPLET, QUARTET ... 

carga=$9     #Cargas - +2, +1, 0, -1, -2 ... 

shift;shift;shift;shift;shift;shift;shift;shift;shift; 

metodoAb=$1  #Metodo Ab-initio: HF, RHF, UHF, DFT, ... 

baseAb=$2    #Base Ab-initio: 3-21G, 6-31G, lanl2dz, GEN, ... 

multiAb=$3   #Multiplicidades  abinitio: 1, 2, 3, 4 ... 

cargaAb=$4   #Cargas - +2, +1, 0, -1, -2 ... 

grad=$5      #Gradiente procurado 

fatd1=1.0  #fator de D1=fatd1*D1 

fatd2=1.0  #fator de D2=fatd2*D2 

fatd3=1.0  #fator de D3=fatd3*D3 
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otimd=1.0  #otimizador de distancia 

otima=1.0  #otimizador de angulo    

otimt=1.0  #otimizador de torsao    

#Exemplos: 

if [ "${tipo}" = "zig" ] 

then 

   #Crescimento ZIG-ZAG 

  n=` echo "${n0}"|bc -l ` #numero de atomos X na base  

  nome=nano${tipo}-${atomo1}${atomo2}-n${n}-m${m}-${metodo}-${multi}-

c${carga} 

  te=` echo "scale=10;(0.0000*2*${pi}/${n})"|bc -l `  #angulo inicial; zero 

grau 

  dte=` echo "scale=10;(2*${pi}/${n})"|bc -l ` #incremento do angulo  

  D1=`echo "scale=10;${fatd1}*(2*${d}*c(${pi}/6))"|bc -l ` # distancia basica 

X-X  

  ra=`echo "scale=10;(${D1})/(sqrt(2 - 2*c(2*${pi}/${n})))"|bc -l ` #raio 

ZIG-ZAG 

  #curv=`echo "scale=10;1/${ra}"|bc -l ` # distancia basica do ZIG-ZAG 

  inc1=0.00000 

  inc2=` echo "scale=10;1.0000*(${pi}/${n})"|bc -l ` #angulo inicial de Y  

  incte=` echo "scale=10;1.0000*(${pi}/${n})"|bc -l ` #incremento do angulo 

no nivel 

  D2=`echo "scale=10;${fatd2}*(${d}*s(${pi}/6))"|bc -l `  # incr D2*fat2  

  D3=`echo "scale=10;${fatd3}*(${d} + ${d}*s(${pi}/6))"|bc -l `  # incr 

D3*fat3  

  tx=`echo "scale=10;-${ra}*c(${te} + ${inc1})"|bc -l ` #translacao em x 

  ty=`echo "scale=10;-${ra}*s(${te} + ${inc1})"|bc -l ` #translacao em y 

  z2=`echo "scale=10;0.0000*s(${pi}/6)"|bc -l `   #coord z2 

#   echo "  ${metodo} PREC SHIFT1000 DEBUG LET T=1999999 + " > ${nome}.dat                                    

#   echo "  DUMP=250000 XYZ PL GEO-OK ${multi} CHARGE=${carga}  " >> 

${nome}.dat                                    

   echo "  ${metodo} UHF CYCLES=30000 PREC SHIFT1000 DEBUG LET T=19999999 + " 

> ${nome}.dat                

   echo "  DUMP=250000 AUX GNORM=0.01 PL GEO-OK ${multi} CHARGE=${carga} " >> 

${nome}.dat                     

   echo "  ${nome}" >> ${nome}.dat                                    

   echo "         " >> ${nome}.dat                                    

   j=1 

   while [ ${j} -le ${m} ] 

   do 

   

    i=1 

    while [ ${i} -le ${n} ] 

    do 

      x1=`echo "scale=10;${tx} + ${ra}*c(${te} + ${inc1})"|bc -l `   #coord 

x1 

      y1=`echo "scale=10;${ty} + ${ra}*s(${te} + ${inc1})"|bc -l `  #coord y1 

      x2=`echo "scale=10;${tx} + ${ra}*c(${te} + ${inc2})"|bc -l `   #coord 

x2 

      y2=`echo "scale=10;${ty} + ${ra}*s(${te} + ${inc2})"|bc -l `  #coord y2 

      echo "${atomo1} ${x1}  1  ${y1}  1  ${z2}  1 " >> ${nome}.dat                                    

      echo "${atomo2} ${x2}  1  ${y2}  1  ${D2}  1 " >> ${nome}.dat                                    

      te=` echo "scale=10;${te} + ${dte}"|bc -l ` 
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      i=` expr ${i} + 1 ` 

    done 

      z2=` echo "scale=10;${z2} + ${D3}"|bc -l ` 

      D2=` echo "scale=10;${D2} + ${D3}"|bc -l ` 

      inc1=` echo "scale=10;${inc1} + ((-1)^(${j}-1))*${incte}"|bc -l ` 

      inc2=` echo "scale=10;${inc2} + ((-1)^(${j}-1))*${incte}"|bc -l ` 

      j=` expr ${j} + 1 ` 

     

   done 

  #rodar-mopac2016.sh  ${nome}.dat 

  #/opt/mopac/MOPAC2016.exe  ${nome}.dat 

  conv-xyz-dat-gjf-supercomputador.sh  ${nome} ${metodoAb}  ${baseAb}  

${cargaAb} ${multiAb}   14   24 

#  conv-arc-dat-gjf.sh ${nome} ${metodoAb} ${baseAb} ${cargaAb} ${multiAb}  

#  echo "batg03-vulc ${nome} " >> fila-abinitio-varredor.sh 

#  batg03-vulc ${nome}  

#  grep -H "SCF Done" ${nome}.log >> energias-abi-varredor.sh 

else 

   #Crescimento BARCO  

   n=` echo "${n0}"|bc -l ` #numero de carbono vezes quatro  

   nome=nano${tipo}-${atomo1}${atomo2}-n${n}-m${m}-${metodo}-${multi}-

c${carga} 

  

   te=` echo "scale=10;0.0000*(2*${pi}/${n})"|bc -l ` # angulo  

   te0=` echo "scale=10;2*${pi}/${n}"|bc -l ` # angulo  

   incte=` echo "scale=10;${pi}/${n}"|bc -l ` #incremento do angulo de nivel  

   dte=` echo "scale=10;(2*${pi}/${n})"|bc -l ` #incremento do angulo maior - 

Zn-Zn 

   D1=`echo "scale=10;${fatd1}*(2*(${d} + ${d}*c(2*${pi}/${n})))"|bc -l ` # 

distancia basica do BARCO 

   ra=`echo "scale=10;(${D1})/(sqrt(2 - 2*c(2*${pi}/${n})))"|bc -l ` #raio 

BARCO 

   #curv=`echo "scale=10;1/${ra}"|bc -l ` # curvatura BARCO   

   #echo "curv=${curv}" 

   inc=0.00000 

   dte1=` echo "scale=10;${fatd2}*(${te0}/3)"|bc -l ` #incremento do angulo 

menor - Zn-O  

   D3=`echo "scale=10;${fatd3}*(${d}*s(${pi}/3))"|bc -l ` # incr em z2*fatdz2 

   dz1=`echo "scale=10;${d}*s(${pi}/3)"|bc -l `  # incremento em z1  

   #dz2=`echo "scale=10;${fatdz2}*(2*${d}*s(${pi}/3))"|bc -l ` # incr em 

z2*fatdz2 

   tx=`echo "scale=10;-${ra}*c(${te} + ${inc})"|bc -l `     #translacao em x 

   ty=`echo "scale=10;-${ra}*s(${te} + ${inc})"|bc -l `     #translacao em y 

   z1=`echo "scale=10;0.0000*s(${pi}/6)"|bc -l `            #coord z1 

#  echo "  ${metodo}  PREC  SHIFT1000 DEBUG LET T=1999999 + " > ${nome}.dat 

#  echo "  DUMP=250000 XYZ PL GEO-OK ${multi} CHARGE=${carga}  " >> 

${nome}.dat 

   echo "  ${metodo} UHF CYCLES=30000 PREC SHIFT1000 DEBUG LET T=19999999 + " 

> ${nome}.dat                

   echo "  DUMP=250000 AUX GNORM=0.01 PL GEO-OK ${multi} CHARGE=${carga} " >> 

${nome}.dat                     

   echo "  ${nome}" >> ${nome}.dat 

   echo "         " >> ${nome}.dat 
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  j=1 

  while [ ${j} -le ${m} ] 

  do 

   

    i=1 

    while [ ${i} -le ${n} ] 

    do 

     x1=`echo "scale=10;${tx} + ${ra}*c(${te} + ${inc})"|bc -l `      #coord 

x1 

     y1=`echo "scale=10;${ty} + ${ra}*s(${te} + ${inc})"|bc -l `      #coord 

y1 

     x2=`echo "scale=10;${tx} + ${ra}*c(${te} + ${dte1} + ${inc})"|bc -l `  

#coord x2 

     y2=`echo "scale=10;${ty} + ${ra}*s(${te} + ${dte1} + ${inc})"|bc -l `  

#coord y2 

    echo "${atomo1}   ${x1}  1  ${y1}   1   ${z1}  1 " >> ${nome}.dat 

    echo "${atomo2}   ${x2}  1  ${y2}   1   ${z1}  1 " >> ${nome}.dat 

     te=` echo "scale=10;${te} + ${dte}"|bc -l ` 

     #z1=` echo "scale=10;${z1} + ((-1)^${i})*${dz1}"|bc -l ` 

     i=` expr ${i} + 1 ` 

    done 

    z1=` echo "scale=10;${z1} + ${D3}"|bc -l ` 

    inc=` echo "scale=10;${inc} + ((-1)^(${j}))*${incte}"|bc -l ` 

   

    j=` expr ${j} + 1 ` 

     

  done 

 

 

#!/bin/bash 

#adiçao de hidrogenio nas pontas de nanobar 

#Msc.Jeziel e Dr.José Divino dos Santos          v.01         23/08/2018  

nome=$1         #nomes dos arquivos bar.mol (sem .mol) 

tipo=$2         #tipo de nanotubos: 1-armchair 2-zigzag  

if [ ${tipo}  -eq 1 ] 

then 

    ###Armchair 

   echo > temp1; rm temp1; echo > temp2; rm temp2; n=` echo ${nome}.mol|cut -

d- -f3|cut -dn -f2 `;  m=` echo ${nome}.mol|cut -d- -f4|cut -dm -f2 `; nat=` 

echo "2*${n}*${m}"|bc `; nf=` echo "2*${n}*(${m} - 1) + 2"|bc ` ;nu=` echo 

"2*${n} + 2"|bc `;nl=` expr ${nat} + 2 `; i=3; while [ ${i} -le ${nl} ];do 

v=(` head -${i} ${nome}.mol|tail -1|awk '{printf("%s   %6.6f   %6.6f   %6.6f   

\n",  $1, $2, $3, $4 )}'`); if [ ${i} -le ${nu} ]; then  echo "${v[0]}  

${v[1]}   ${v[2]}   ${v[3]}" >> temp1 ; awk -v vx="${v[1]}" -v  vy="${v[2]}" 

-v  vz="${v[3]}" 'BEGIN{printf("%s   %6.6f   %6.6f   %6.6f   \n", "H", vx, 

vy, vz - 1.0)}' >> temp2 ;  fi ; if [ ${i} -gt ${nu} ] && [ ${i} -le ${nf} ]; 

then  echo "${v[0]}  ${v[1]}   ${v[2]}   ${v[3]}" >> temp1  ;  fi;  if [ ${i} 

-gt ${nf} ]; then  echo "${v[0]}  ${v[1]}   ${v[2]}   ${v[3]}" >> temp1 ; awk 

-v vx="${v[1]}" -v  vy="${v[2]}" -v  vz="${v[3]}" 'BEGIN{printf("%s   %6.6f   

%6.6f   %6.6f   \n", "H", vx, vy, vz + 1.0)}' >> temp2 ;  fi ; i=` expr ${i} 

+ 1 ` ; done ; natH=` echo "4*${n}"|bc ` ; natotal=` echo "2*${n}*${m} + 

${natH}"|bc `; echo "   ${natotal}  " > ${nome}-${natH}H.mol ; echo "       
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">> ${nome}-${natH}H.mol;  cat temp1 temp2 >> ${nome}-${natH}H.mol;  molden 

${nome}-${natH}H.mol 

else 

    ###Zigzag 

    #rm temp1; echo > temp2; rm temp2; n=` echo ${nome}.mol|cut -d- -f3|cut -

dn -f2 `;  m=` echo ${nome}.mol|cut -d- -f4|cut -dm -f2 `; nat=` echo 

"2*${n}*${m}"|bc `; nf=` echo "2*${n}*(${m} - 1) + 2"|bc ` ;nu=` echo "2*${n} 

+ 2"|bc `;nl=` expr ${nat} + 2 `; i=3; while [ ${i} -le ${nl} ];do v=(` head 

-${i} ${nome}.mol|tail -1|awk '{printf("%s   %6.6f   %6.6f   %6.6f   \n",  

$1, $2, $3, $4 )}'`); if [ ${i} -le ${nu} ]; then  echo "${v[0]}  ${v[1]}   

${v[2]}   ${v[3]}" >> temp1 ; awk -v vx="${v[1]}" -v  vy="${v[2]}" -v  

vz="${v[3]}"  -v i0="${i}"  'BEGIN{ip=(-1)^(i0);  if(ip==-1){  printf("%s   

%6.6f   %6.6f   %6.6f   \n", "H", vx, vy, vz - 1.0); }; }' >> temp2 ;  fi ; 

if [ ${i} -gt ${nu} ] && [ ${i} -le ${nf} ]; then  echo "${v[0]}  ${v[1]}   

${v[2]}   ${v[3]}" >> temp1  ;  fi;  if [ ${i} -gt ${nf} ]; then  echo 

"${v[0]}  ${v[1]}   ${v[2]}   ${v[3]}" >> temp1 ; awk -v vx="${v[1]}" -v  

vy="${v[2]}" -v  vz="${v[3]}"   -v i0="${i}"  'BEGIN{ ip=(-1)^(i0); 

if(ip==1){  printf("%s   %6.6f   %6.6f   %6.6f   \n", "H", vx, vy, vz + 1.0); 

}; }' >> temp2 ;  fi ; i=` expr ${i} + 1 ` ; done ; natH=` echo "2*${n}"|bc ` 

; natotal=` echo "2*${n}*${m} + ${natH}"|bc `; echo "   ${natotal}  " > 

${nome}-${natH}H.mol ; echo "       ">> ${nome}-${natH}H.mol;  cat temp1 

temp2 >> ${nome}-${natH}H.mol;  molden ${nome}-${natH}H.mol 

    echo > temp1; rm temp1; echo > temp2; rm temp2;  echo > temp3; rm temp3; 

n=` echo ${nome}.mol|cut -d- -f3|cut -dn -f2 `;  m=` echo ${nome}.mol|cut -d- 

-f4|cut -dm -f2 `; nat=` echo "2*${n}*${m}"|bc `; meio=` echo "${n}*${m}"|bc 

`; nf=` echo "2*${n}*(${m} - 1) + 2"|bc ` ;nu=` echo "2*${n} + 2"|bc `;nl=` 

expr ${nat} + 2 `; i=3; while [ ${i} -le ${nl} ];do v=(` head -${i} 

${nome}.mol|tail -1|awk '{printf("%s   %6.6f   %6.6f   %6.6f   \n",  $1, $2, 

$3, $4 )}'`); if [ ${i} -le ${nu} ]; then  echo "${v[0]}  ${v[1]}   ${v[2]}   

${v[3]}" >> temp1 ; awk -v vx="${v[1]}" -v  vy="${v[2]}" -v  vz="${v[3]}"  -v 

i0="${i}"  'BEGIN{ip=(-1)^(i0);  if(ip==-1){  printf("%s   %6.6f   %6.6f   

%6.6f   \n", "H", vx, vy, vz - 1.0); }; }' >> temp2 ;  fi ; if [ ${i} -gt 

${nu} ] && [ ${i} -le ${nf} ]; then  echo "${v[0]}  ${v[1]}   ${v[2]}   

${v[3]}" >> temp1  ;  fi;  if [ ${i} -gt ${nf} ]; then  echo "${v[0]}  

${v[1]}   ${v[2]}   ${v[3]}" >> temp1 ; awk -v vx="${v[1]}" -v  vy="${v[2]}" 

-v  vz="${v[3]}"   -v i0="${i}"  'BEGIN{ ip=(-1)^(i0); if(ip==1){  printf("%s   

%6.6f   %6.6f   %6.6f   \n", "H", vx, vy, vz + 1.0); }; }' >> temp2 ;  fi ; 

if [ ${i} -eq ${meio} ]; then  awk -v vx="${v[1]}" -v  vy="${v[2]}" -v  

vz="${v[3]}"   'BEGIN{  printf("%s   %6.6f   %6.6f   %6.6f   \n", "C", vx + 

1.70 , vy , vz  ); }' >> temp3 ;  fi ;  i=` expr ${i} + 1 ` ; done ; natH=` 

echo "2*${n}"|bc ` ; natotal=` echo "2*${n}*${m} + ${natH} + 1"|bc `; echo "   

${natotal}  " > ${nome}-${natH}H.mol ; echo "       ">> ${nome}-${natH}H.mol;  

cat temp1 temp2 temp3 >> ${nome}-${natH}H.mol;  molden ${nome}-${natH}H.mol 

fi 
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S2. script to encapsulate the BNZ in the geometric center of the BNNT and CNT models. 

#!/bin/bash 

#Ponto geométrico  

#MsC. Jeziel Rodrigues dos Santos      28/03/2019       v.01 

nome=$1             #nome do arquivo.mol (sem .mol) 

nl=` wc -l ${nome}.mol|awk '{print $1}' ` 

nat=` wc -l ${nome}.mol|awk '{print $1 - 2}' ` 

#######ponto médio coordenada x 

i=3; sx=0.000000;  while [ ${i} -le ${nat} ] 

do 

at=` head -${i} ${nome}.mol|tail -1|awk '{print $1}' `  

x=` head -${i} ${nome}.mol|tail -1|awk '{print $2}' ` 

sx=` echo "scale=6;${sx} + ${x}"|bc -l ` 

#echo "${at}   ${x}   ${sx}" 

i=` expr ${i} + 1 ` 

done 

mx=` echo "scale=6;${sx}/${nat}"|bc -l ` 

#echo [ mediax=${mx} ] 

#######ponto médio coordenada y 

i=3; sy=0.000000;  while [ ${i} -le ${nat} ] 

do 

at=` head -${i} ${nome}.mol|tail -1|awk '{print $1}' `  

y=` head -${i} ${nome}.mol|tail -1|awk '{print $3}' ` 

sy=` echo "scale=6;${sy} + ${y}"|bc -l ` 

#echo "${at}   ${y}   ${sy}" 

i=` expr ${i} + 1 ` 

done 

my=` echo "scale=6;${sy}/${nat}"|bc -l ` 

#echo [ mediax=${my} ] 

#######ponto médio coordenada z 

i=3; sz=0.000000;  while [ ${i} -le ${nat} ] 

do 

at=` head -${i} ${nome}.mol|tail -1|awk '{print $1}' `  

z=` head -${i} ${nome}.mol|tail -1|awk '{print $3}' ` 

sz=` echo "scale=6;${sz} + ${z}"|bc -l ` 

#echo "${at}   ${z}   ${sz}" 

i=` expr ${i} + 1 ` 

done 

mz=` echo "scale=6;${sz}/${nat}"|bc -l ` 

echo [${mx}    ${my}    ${mz} ] > ponto-medio-${nome}.mol 
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ABSTRACT: Activated carbon materials are 

derived from carbonaceous sources and used as a 

technological element for various industrial 

purposes. These materials are present in most filters 

(cartridges) in personal respiratory protective 

equipment. Due to this context and to enhance 

sustainability concepts and human health in the 

production of materials, this study aimed to produce 

activated carbon from an abundant agricultural 

waste in the northeast Brazil through a route that not 

only favors its simultaneous carbonization and 

activation but also its thermal neutralization. The 

precursor biomass was characterized by particle 

size analysis, a standard testing method for moisture 

and ash content which were characterized by FRX, 

CHN, and thermal analysis. The produced activated 

carbon was characterized by potential of hydrogen 

(pH), XRD, BET, SEM, TPD by ammonia and UV-

Vis analysis. The activated carbons showed yields  

between 73 and 78%. The morphology varied in function of the biomass interaction with the type and concentration of acid 

used. The produced samples showed adsorption capacity and selectivity to ammonia gas. 
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1. Introduction 
 

Occupational respiratory protection (ORP) is often a 

legal requirement in some countries to guarantee the 

health and safety of thousands of workers who are 

exposed to harmful substances which may cause 

occupational diseases by inhaling contaminated air in 

the workplace. Appropriate respirators shall be used 

when engineering control measures are not feasible, are 

being implemented, evaluated, or in emergency cases 

(Connor et al., 2016). Respirators are specific personal 

protective equipment designed to provide respiratory 

protection (MacIntyre et al., 2014). Protection of some 

respirators occurs by removing contaminants from the 

air: respirators of this type include particulate 

respirators, which filter out airborne particles (Connor 

et al., 2016). They have activated carbon inside their 

filters (cartridges) and their classification type can vary 

according to the risk agent to be absorbed. 

Activated carbon is any carbonaceous material with 

favorable characteristics for adsorption reactions: well-

developed internal surface area, pore structure, and 

superficial functional groups (Pezoti et al., 2016; 

Poinern et al., 2011) used as an adsorbent, catalyst, 

catalyst support, and energy storage (Shen et al., 2014). 

On the other hand, activated carbon can also be used as 

an active surface to be doped or combined with other 

elements in a wide possibility for industrial applications 

(Shen et al., 2014). Easy operation, large-scale 

production, high efficiency, sensitivity to toxic 

substances, and the possibility of reuse favors using 

activated carbon in the adsorption process (Shen et al., 

2014). 

Activated carbons produced from biomass residues 

have been an important research area. Agricultural 

biomass and industrial waste have been used as raw 

material in the preparation of activated carbon (Pezoti 

Junior et al., 2014) to find abundant, renewable, and 

low-cost precursors in contrast to the high production 

costs on an industrial scale and because of the use of 

nonrenewable sources of activated commercial carbons 

(Nunes et al., 2015). Various types of waste and biomass 

have recently been processed to obtain activated carbon 

for several industrial purposes such as coconut shells 

(Nunes et al., 2015), macadamia nuts shells (Martins et 

al., 2014), bamboo (Shengsen Wang et al., 2015), peach 

and olive pits (Tsyntsarski et al., 2015), pineapple 

(Mahamad et al., 2015), peanut shells (Zhang and Lu, 

2015), rice husks (Dalai et al., 2015), sugarcane bagasse 

(Dalai et al., 2015; Gonzaga et al., 2018), sewage sludge 

(Huang et al., 2017; Wu et al., 2014), waste from palm 

tree stems (AlOthman et al., 2014), seeds from Platanus 

orientalis biomass (Dodevski et al., 2017), and banana 

peel (Van Thuan et al., 2017), among others. 

Pumpkin is a typical fruit in northeastern Brazil. Oil 

extraction from its seeds does not have any significant 

productive or technological relevance in the region. 

Therefore, when these seeds are not reused for planting, 

they are either intended for human and animal 

consumption just because of the beneficial nutrients 

they contain (Carvalho et al., 2012) or are discarded 

(Joshi et al., 1993). Thus, it is a by-product of the 

agricultural segment with low technological and 

commercial impact. Traditional methods to produce 

activated carbon propose the carbonization of biomass 

followed by the use of activators (whether chemical or 

physical or a combination of both) in two asynchronous 

different steps (Gonçalves et al., 2016; Solís-

Domínguez et al., 2011). An improvement in the 

production process has recently been considered so that 

these steps occur simultaneously. This process is 

classified as a synchronous one-step process. As a result, 

the characteristics of the obtained material vary 

according to these production steps. 

Thus, this paper aimed to synthesize activated carbon 

from pumpkin seeds using the carbonization route and 

chemical activation by thermal neutralization. The 

relationship among the synthesis methodology, 

reagents, and starting materials used with the 

characteristics shown by the activated carbon was 

investigated. Adsorption experiments with TPD were 

carried out with ammonia in the presence of moisture. It 

became an agent which carried risks caused by 

accidental inhalation, which is harmful to people’s 

health in working conditions in all industries where it is 

employed. Moreover, the adsorption potential of 

aqueous solutions of methylene blue dye was 

investigated following the ultraviolet-visible (UV-Vis) 

measurements in the absorbance model. Furthermore, 

this investigation may demonstrate the effectiveness of 

the produced material for environmental applications, 

human health, and removing pollutants from 

wastewater. 

 

2. Experimental 
 

2.1 Characteristics 
 

The plant which originates pumpkin belongs to the 

Cucurbita genus (Cucurbitaceae family) (Hameed et al., 

2008) and comprises various wild and domesticated 

species native to the Americas. The plant grows well in 

hot and dry climates (Ferreira et al., 2017). Pumpkin has 

flat edible seeds (Njoku et al., 2014). 
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2.2 Characterization of the biomass 
 

The pumpkin seeds were fragmented into a food 

commercial crusher for 7 min at 400 W of power and 

(55 ± 5) Hz. The material was deagglomerated using a 

200-mesh sieve. The fragmented seeds were then 

characterized by particle size analysis using laser 

diffraction, the standard testing method for moisture and 

ash content, X-ray fluorescence (FRX), elementary 

chemical analysis (CHN), and thermal analysis. The 

distribution curve of the particle size analysis by laser 

diffraction carried out in the waste was obtained by 

granulometry in a CILAS 1180 device in an aqueous 

liquid dispersant, and then subjected to the effects of 

ultrasonic agitation for 60 s. The standard testing 

method for moisture and ash content was performed 

according to ASTM E1755 and E1756, respectively. 

Chemical composition was obtained by FRX 

spectroscopy using an EDX-720 Shimadzu in a vacuum 

atmosphere. Elementary chemical analysis was 

performed with 2.7 mg in a Pekin Elmer analyzer 2400 

Series II model connected to a microbalance model 

AutoBalance controller. Helium gas (18 psi – 900 

mL min–1– 913 K) and oxygen (15 psi – 50 mL min–1 – 

1198 K) were used. 

A thermal analysis was performed in a Netzsch STA 

Model 449F3 device at a heating rate of 283 K min–1 and 

a temperature range of 303–1023 K using 10 mg of the 

sample under synthetic airflow (100 mL min–1). 

 

2.3 Pretreatment 
 

The precalcination of biomass was performed at 453 

K with an isotherm of 1 h and a heating rate of 283 

K min–1 in a Linn Elektro Therm furnace. Next, the 

material was pressed into pellets in a stainless-steel 

matrix in a ratio of 0.3:1 of binder/raw material using 

1 Ton for 5 min. Pellets were fabricated in a cylindrical 

shape of approximately 25 mm in diameter by 5 mm 

high. 

 

2.4 Synthesis 
 

The samples were produced by the carbonization 

reaction and concomitant to chemical activation. Three 

different acids were used in this process: hydrochloric 

(CLO), sulfuric (SUL), and nitric (NIT) acids in 

different concentrations (10%, 30%, 50% in acid:water 

volume, respectively) for chemical activation. This 

method was applied according to the following 

procedure: each pellet obtained (after the pretreatment) 

was put in an acid solution for 5 min until complete 

saturation and placed directly into a mullite-cordierite 

box. The pellets were covered with precalcined raw 

biomass. The box was immediately closed and heated to 

623 K at a heating rate of 283 K min–1 in an air 

atmosphere for 10 min. The method is illustrated in the 

flow chart demonstrating the experimental procedure as 

shown in Fig. 1. Thermal neutralization was applied to 

the obtained activated carbons: the samples were heated 

between 573–673 K for 144 h and then cooled at room 

temperature. The pellets were deagglomerated in an 

agate mortar. 

The nomenclature used to identify the samples were 

PS (pumpkin seeds) plus the abbreviation of the 

employed acid + amount (%) of activator used. This 

nomenclature was used for different amounts of acids 

and concentrations. 

 

2.5 Characterization of activated carbons 
 

The following techniques were used to characterize 

active carbons: potential of hydrogen (pH), X-ray 

diffraction (XRD), specific surface area using BET 

(Brunauer-Emmett-Teller), and scanning electron 

microscopy (SEM), temperature-programmed 

desorption (TPD) by ammonia and UV-vis 

spectrometer. The pH measures were performed in a 

diluted aqueous solution with deagglomerated powders 

of activated carbon produced in a mass ratio of 1:1 

(water:sample) under stirring for 10 min at room 

temperature (298K). The solution was filtered and 

measured by the electrometric method using a Hanna 

PH21 digital meter with a measuring range of 0–14, 

resolution of 0.01, an accuracy of ± 0.02, and HI 1110 

electrode type. XRD diffractograms were performed by 

a Shimadzu XRD-7000 diffractometer, CuKα 

monochromatic radiation, with an angular range of 2θ 

range from 10 to 80°, scanning speed of 1° min–1, a step 

of 0.02°, a voltage of 40 kV and a current of 30 mA. The 

specific surface area measurements were obtained by a 

Quanta Chrome Corporation NOVA model-2000 using 

the BET method. The samples were previously degassed 

at 473K for 1 h. The SEM micrographs were obtained 

using a Hitachi High-TM3000 microscope. The samples 

were directly deposited into a metallic holder coated 

with carbon to fix them. 

TPD by ammonia was performed in the automated 

analyzer Micromeritics AutoChem II 2029. TPD runs 

occurred with approximately 0.100 g of material at a 

flow of 50 mL min–1 of helium gas at ambient 

temperature up to 383 K (heating rate of 283 K min–1), 

and then up to 573 K. It was then cooled down to 323 K. 

After 1 min, a gaseous mixture of ammonia and helium 
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(5% NH3/He) with a flow rate of 50 mL min–1 was 

introduced for 30 min under the same heating rate. 

Thereafter, the inert gas recirculated in the system at the 

same flow rate, and the sequence of the described 

process was repeated by heating at 373 K (283 K min–1, 

15 min) and 573 K (283 K min–1, 20 min). The UV-vis 

spectrometer was performed using a Shimadzu UV-

2600 spectrophotometer at a wavelength range between 

400 and 800 nm. 

 

 

 
Figure 1. Flowchart of the experimental production procedure for the activated carbon. 

 

3. Results and Discussion 
 

3.1 Characterization of the precursor biomass 
 

Waste processing in the fragmentation and burning 

processes was achieved by reducing the particle size 

through grinding, which provided a more homogenous 

and uniform characteristic to the raw material. The 

intrinsic characteristics of the raw material determined 

the type of grinding used, and therefore conditioned its 

grinding evolution. The oleaginous nature of the seeds 

which are sensitive to high temperatures made the 

traditional use of fragmentation equipment unfeasible. 

This justified the use of commercial crushers as 

described in the methodology. 

The result of particle sizes of the powder obtained 

after waste fragmentation in natura is shown in the 

granulometric distribution curve in Fig. S1 

(Supplementary Information). The sample shows a wide 

variation in the particle size, irregular visual appearance, 

and wide distribution range between 2.5 to 550 mm. The 

average particle size measured is about 59.75 mm. 

Enlargement in the size distribution technique suggests 

the presence of rough particles with an irregular shape 

that is not perfectly spherical, according to the principle 

of the technique and the Fraunhofer Theory (Beuselinck 

et al., 1998). 

After the grinding process, the in natura samples 

have a level of humidity and ash of 0.10% and 10.44%, 

respectively. It is known that the presence of moisture in 

biomass is related to the intrinsic characteristics of the 

waste such as aspects of cultivation, storage, and 

production steps, or their combination with each one of 

the factors. The presence of inorganic impurities is 

relatively higher than the humidity (only 0.1%), which 

can indicate a waste that is less saturated with reduced 

hydration. This may lead to the mass loss being 

minimized by humidity. 

The gravimetric variation which represented the 

standard result and was adapted from the ash content is 

shown in Fig. 2. A reduction in the isotherm time for 
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preserving the thermal stability of the waste during the 

test ash content did not significantly affect the results. 

This was one of the viable ways for the variations which 

were noted to obtain the constant mass. The residue 

(0.0922 g) quantities were measured after measuring 

about 10.44% of the ash content. This percentage 

represents the amount of the remaining mineral part and 

impurities after degradation of the organic matter after 

the test and may have a predominant composition by 

potassium, phosphorus, sulfur, and sodium as shown in 

the FRX results of the in natura sample (Tab. 1). The 

presence of alkali metal oxides, alkaline earth metal, and 

others with less significant quantities is also observed, 

which can interact with the activator acid during the 

carbonization-activation process, thereby causing over-

position phases without necessarily exerting a strong 

influence on the material properties due to the low 

amounts detected. Evaluating the ash content can 

represent a measure of minerals and other inorganic 

materials and possible impurities present in the in natura 

sample of the pumpkin seeds according to the testing 

method. 

 

 
Figure 2. Comparative analysis of the weight loss of in 

natura ground samples during the ash content test for 

the standard and adapted samples. 

 

The amount of volatile matter was quantified by 

elemental chemical analysis in two test runs. The 

carbon, nitrogen, and oxygen percentages measured in 

the analyzed samples are shown in Tab. 2. The 

difference in the carbon percentage between the PS in 

natura sample and the PS charred sample is very subtle 

and not significant, which may indicate that all the 

carbon mass was substantially preserved during the 

process proposed in this work. 

Table 1. Chemical composition of the in natura sample. 
Chemical composition In natura sample (%) 

K2O 41.67 

P2O5 18.61 

SO3 14.73 

Na2O 11.41 

CaO 3.07 

Fe2O3 2.92 

SiO2 2.46 

ZnO 2.21 

CuO 1.12 

MnO 0.97 

Rb2O 0.83 

 

Table 2. Mean values of the CNH composition of PS 

samples used in this work in comparison with a 

commercial sample. In which: PS1 = in natura sample 

and PS2 = sample used in the standard test method for 

ash content. 
Samples Carbon (%) Hydrogen (%) Nitrogen (%) 

PS1 55.64 9.81 5.88 

PS2 40.64 2.45 9.99 

 

The thermal characterization of in natura PS is shown 

in Fig. 3. The thermal decomposition occurs in four 

mass variation steps directly related to the composition 

of the Cucurbita seeds, which are rich in oil, protein, 

fiber, and micronutrients (Joshi et al., 1993). The mass 

loss that occurs at approximately 383 K can be attributed 

to moisture, in turn, related to water removal (Caputi et 

al., 1991). Next, the second event had a 40.83% weight 

loss in the range of 415 to 620 K and can be associated 

with the degradation of the organic matter and with the 

formation of carbonized material. The third stage occurs 

quickly at the moment that the temperature reaches a 

maximum of 653 K with 14.31% weight loss which may 

be related to the combustion of oils. The fourth 

decomposition stage occurs between 695–937 K 

corresponds to 31.66% weight loss which decomposes 

slowly and may be attributed to protein degradation and 

thermal decomposition of the other micronutrients. The 

residue is stable at 923 K and showed a mass change of 

7.43%. These results show a reduction of the humidity 

values and differential thermal stability to the normative 

parameters applied to biomass in this work. Thus, the 

standard tests and thermal analysis of biomass were 

fundamental to achieve a carbonization temperature that 

was favorable to producing the activated carbon. 
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Figure 3. Thermal analysis curves (TG-DTG) of the in 

natura PS sample. 

 

From the heat treatment applied to obtain the 

activated carbon, the ignition and activation 

temperatures are 563~583 and 623 K, respectively. In 

addition, the gravimetric yield of the powdered and 

palletized material was 21.93 and 61.41%, respectively. 

The gravimetric yield in this study was calculated from 

the ratio of the produced carbon mass and biomass 

precursor, according to Eq. 1. 

R (%) = (produced carbon (mass)/biomass (mass)) × 100 (1) 

The yield is the determining factor to control the 

burning and production process. In this sense, it is a 

variable that indicates the carbonization efficiency in a 

process given as a percentage. The carbonization 

temperature and combustion efficiency are also 

influenced by other factors such as humidification and 

volatile content which affect the calorific value of the 

sample. It was also observed that the yields were 

variable depending on their morphological aspect. The 

performance was higher when the sample was 

compressed into a pellet form. Therefore, the processing 

proposed in this study included the precarbonization 

together with the pressing procedure. The aim was to 

minimize the mass loss by moisture and eliminate other 

components volatilized at 453 K with the 

precarbonization stage. This was used to increase the 

carbonization efficiency and enable the process on an 

industrial scale because the performance in powder form 

will be low due to the gravimetric yield having little 

significance when compared with the yields shown in 

the pellet form. 

The percentage value of the burn-off is implicit in the 

results of the gravimetric yield of activated carbon 

pellets because the carbonization occurred 

simultaneously to activation. This understanding 

becomes clearer with the yield definition given by 

Marshall et al. (2000), which defines it as the amount of 

the precursor remaining after pyrolysis and activation. 

Thus, the total yield of the activated carbon pellet values 

depends on the activator and proportions used. These 

results are shown in Tab. 3. 

 

Table 3. Total gravimetric yield of activated carbons 

according to the activator proportions. 
Sample Total gravimetric yield (%) 

PSCLO10 75.94 

PSCLO30 80.78 

PSCLO50 66.76 

PSNIT10 78.00 

PSNIT30 78.98 

PSNIT50 74.36 

PSSUL10 67.82 

PSSUL30 76.82 

PSSUL50 73.04 

 

Yields vary slightly depending on the activator used. 

Although it had high and low peaks for the PSCLO30 

and PSCLO50 samples, others had yields between 73 

and 78%. The analysis of each group demonstrates an 

increase in the yield in the ratio of 30% activator, and a 

fall when the activator had a concentration of 50%. 

However, they are superior to the mean measured in the 

gravimetric yield of the carbonized pellets (on a dry 

basis without the activator) in all cases. Another variable 

observed in this phase was the firing atmosphere, which 

influences carbonization. As described in the 

methodology, it was decided to maintain a powder-air 

bed which provides a reducing atmosphere. This use is 

also a factor that enables the process on an industrial 

scale, thereby allowing carbonization in large amounts, 

avoiding the use of reducing atmospheres, and 

simplifying the process at a low cost. The powder-air 

bed can be discarded if the mass ratio is considerably 

higher than for the available oxygen. 

 

3.2 Characterization of activated carbons 
 

3.2.1 Structural 
 

Literature shows that the typical procedure to 

produce activated carbon usually involves washing the 

produced material with water or using a chemical 

compound, or both, to promote neutralization of the 

proposed activation, especially when the chemical 

activation is applied to eliminate the remaining 

impregnating chemical agent (Hameed et al., 2008; 

Rovani et al., 2016). The thermal neutralization 

proposal was an alternative to the commonly reported 
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traditional neutralization methods. The measured pH 

values are shown in Tab. 4. The pH of the carbonized 

sample with no activator obtained under the same 

experimental synthesis conditions was also measured 

for comparison. 

 

Table 4. pH of activated carbon solutions. 
Samples Colorimetric method Electrometric method 

OS 7 7.02 

PSCLO50 6 6.99 

PSNIT50 7 7.12 

PSSUL50 6 6.36 

 

Samples from the PSCLO group had very moderate 

acidity, quite close to neutrality. Only samples from the 

PSSUL group showed a relative acidity of 6.36, 

probably due to the presence of residual sulfur still 

present in the carbon structure, making the structure 

more stable in the proposed neutralization temperature. 

Therefore, this group was subjected to a new 

neutralization run at 723 K temperature. After this, the 

measured pH was around 7.09, with the value 

approaching neutral given the other samples and a 

reference sample without an activator which indicates 

the efficiency of the proposed neutralization. The choice 

of thermal neutralization over traditional means has the 

advantage of facilitating the manufacturing process and 

more viably dealing with the wastes from the process. 

Washing in the industrial field possibly generates 

residual effluent, which would constitute another step in 

the process of burdening deployment, maintenance costs 

of unit operations, and environmental responsibilities 

associated with it. 

The XRD diffraction of PS carbonized without acid 

activation is shown in Fig. 4a. The PS sample revealed 

a typical structure of amorphous materials and types of 

activated carbon with a larger peak at 20.5°. This may 

be related to the composition of the remaining mineral 

part after degradation of the organic matter: mineral 

components are still present in the composition of the 

waste and/or residual impurities in a very slight amount 

after the treatment, but not sufficient to promote forming 

other stable structures with significant crystallinity 

under the thermal treatment conditions. The XRD of the 

produced activated carbons is shown in Fig. 4b. 

Compared to Fig. 4a, it is noted that an amorphous 

matrix originally occurs during pyrolysis in overlapping 

phases when the process is applied in full with the use 

of the activator simultaneously to carbonization. There 

was a contour profile presented by the pure carbon plus 

crystalline phase peaks observed in all groups which 

varied according to the activator. The identified phases 

are mixed compounds dispersed in the amorphous 

matrix and made up of minerals present in biomass 

associated with the elements of the employed acid. 

Except for PSNIT samples (Fig. 4c), which showed 

a peak at 2q = 60° of a mixed compound that only exists 

when a greater amount of activator was used, but 

without any relative significance. The other groups 

retained the same profile with each other. It is seen that 

the activators caused the appearance of different phases 

in the carbonized material, generating activated carbons 

with diffraction characteristics depending on the 

activator used. Sulfuric acid was the agent that caused 

the greatest change in the activated carbon phases 

because it generated a greater number of peaks than 

other activators according to the PSSUL group (Fig. 4d). 

However, the number of dispersed phases of the 

amorphous base is more discreet in the other group. 
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Figure 4 - X-ray diffractogram of the (a) carbonized 

PS, (b) PSCLO, (c) PSNIT and (d) PSSUL samples. 

 

The XRD analysis showed that the activated carbon 

characteristics are associated with the composition and 

waste processing; when subjected to thermal excitation, 

it tends to eliminate organic and moisture matters, 

producing pure carbon or forming thermodynamically 

stable structures related to the presence of inorganic 

and/or impurities depending on the additives and/or 

activating elements. Thus, the activated carbon differs 

from the carbonized sample by the presence of phases 

resulting from the activator interacting and modifying 

the structure during processing. This enables us to infer 

that the activating agent reacted with the biomass during 

the carbonization process, and carbonization and 

activation consequently occurred simultaneously as 

proposed in this work. 

The morphology of the samples was analyzed by 

SEM according to the images in Fig. 5. The in natura 

waste presented regular, equiaxed, and homogeneous 

morphology constituted by blocks and dense plaques 

with a few scattered spherical corpuscles, which are an 

intrinsic characteristic of the biomass (Fig. 5a). A 

sample was collected to check the surface texture and to 

prove the effects of the proposed alterations concerning 

the raw material due to the experimental changes 

applied to the test ash content. The micrograph of this 

sample (Fig. 5b) shows the permanence of the blocks 

and characteristic plaques, which in addition to not 

compromising the test results also caused satisfactory 

changes in morphology, leaving a matrix with a porous 

aspect about the initially characterized thick 

morphology. Thus, the plaques are porous with 

predominantly well-distributed spherical particles on 

the surface. 

The samples submitted to the simultaneous 

activation and carbonization process showed different 

morphologies evidenced by micrographs (Fig. 5c–k). 

The diameter and pore volume tend to increase in the 

chemical activation process, and new pores are created 

due to the reaction between the carbon and activator 

(Yorgun and Yıldız, 2015). Furthermore, the presence 

of pores among the plaques was also favored by the 

simultaneous carbonization, making the biomass 

pyrolysis occur simultaneously to the activation. It is 

possible to note an increase in spaces produced by the 

effects of activating agents in the dense and compact 

matrix of the in natura waste with varying morphology 

depending on the activator. 

The results of specific surface area (SBET), medium 

pore diameter (Dpm), and the total pore volume (Vp) are 

shown in Tab. 5. The surface area and pore volume 

values for each group tended to be directly proportional 

to the concentration of the activator, except for the 

PSCLO50 and PSSUL50 samples. All the activated 

carbon samples produced have the same order of 

magnitude considering all the physical parameters 

measured in this test; however, the chemical activation 

with hydrochloric acid showed the best results. 

 

Table 5. Typical parameters determined by BET. 

Samples 
Physical parameters 

SBET (m2 g–1) Vp (cm3 g–1) Dpm (Å) 

PSCLO10 6.77 0.0035 20.68 

PSCLO30 8.93 0.0045 20.58 

PSCLO50 6.42 0.0033 20.77 

PSNIT10 5.08 0.0025 20.35 

PSNIT30 5.48 0.0028 20.44 

PSNIT50 5.60 0.0028 20.09 

PSSUL10 3.68 0.0016 18.43 

PSSUL30 5.29 0.0027 20.59 

PSSUL50 4.45 0.0022 20.50 
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Figure 5. SEM micrographs for the (a) biomass, (b) carbonized PS, (c–e) PSCLO (10, 30 and 50%), (f–h) PSNIT 

(10, 30 and 50%) and (i–k) PSSUL (10, 30 and 50%) samples. 

 

The specific area values are not only dependent on 

the processing applied but also influence the intrinsic 

characteristics of the raw material and the adsorbate. 

Marshall et al. (2000) explained that low burn-off values 

can lead to a low adsorption capacity by reducing the 

surface area. As the surface area is not related only to 

textural properties, it is possible that the adsorption 

capacity is not impaired, but also to the physical and 

chemical properties exhibited during adsorption. 

The potential of the activated carbon adsorption is 

not only determined by its total surface area, but also by 

its inner porous structure, presence of functional groups 

on the pore surface, and an electrostatic charge of the 

adsorbent and adsorbate (Alam et al., 2007). Bansal et 

al. (1989) explained that the adsorption on activated 

carbon is influenced by three factors: pore size, chemical 

structure, and active sites. The pore size determines the 

adsorption capacity, the chemical structure influences 

the interaction with polar and nonpolar adsorbates 

(acidic or basic surface groups), and the active sites 

determine the type of chemical reactions with other 

molecules. This may also evidence the reasons why the 

potential for adsorption of these samples was not 

compromised, as the TPD results and the UV-Vis 

analysis showed. 
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3.2.2 Application 
 

The TPD test results show that the sample groups 

have profiles with only one desorption region, 

constituting a peak at 573 K (Fig. 6a–c). This value 

corresponds to the regeneration temperature of saturated 

activated carbon; in this case, the test with ammonia gas 

is appropriate to ensure that this gas is not inhaled by the 

user during their work as they are using respiratory 

personal protective equipment without saturation. 

A filter change is always advisable when saturation 

occurs from active sites, i.e., when the pores (where 

adsorption occurs) are completely saturated by the 

filtrate, reducing the potential of activated carbon and 

consequently compromising the adsorption capacity. 

This can vary due to the agent, the concentration, and 

exposure time of the supposedly contaminated 

workplace to the risk of contamination by the gaseous 

chemical agent. 

In the case of the PSCLO group sample (Fig. 6a), the 

desorption profile was similar regardless of the amount 

of activator used in the preparation of activated carbon. 

The PSNIT (Fig. 6b) and PSSUL groups (Fig. 6c) 

showed a variation in the desorption profiles for 

quantities of 30 and 50%, respectively. This behavior 

should be directly related to the type of interaction 

between the acid activator and activated carbon which 

caused changes with increasing concentration. The 

amount of desorbed ammonia relative to the acid and its 

concentration is shown in Fig. 6d. The PSCLO group 

does not have any significant variations in desorption in 

function for the activator concentration when compared 

to the other groups. The adsorption had maximum and 

minimum peaks of 0.20 and 0.16 mol g–1 of ammonia in 

the PSCLO10 and PSCLO30 samples, respectively. The 

sample produced with 50% hydrochloric acid presented 

an intermediate value. Thus, the similarity of the TPD 

profiles (Fig. 6a) and desorbed volumes in this group 

(Fig. 6d) showed that the percentage of activator, in this 

case, had little influence on the number of acidic sites on 

the solid surface. 

The interaction of activators in the PSNIT and 

PSSUL groups with the biomass is different and 

opposite to the increasing amount of acid used in the 

preparation of the activated carbon. It is more 

convenient to conduct the treatment using only 10% of 

the activators in all cases. The samples that showed 

greater amounts of desorbed NH3 were PSNIT50 

(0.24 mol g–1), PSNIT10, and PSSUL30 (both 

0.21 mol g–1), which may indicate a greater number of 

acid sites, and therefore higher adsorption capacity and 

selectivity for ammonia gas. The UV-vis spectroscopy 

results are shown in the Supplementary Information in 

this paper. The spectra show the liquid phase adsorption 

potential of each material tested with methylene blue 

dye. 
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Figure 6. TPD-NH3 profile curve for the (a) PSCLO, 

(b) PSNIT and (c) PSSUL samples and (d) total 

volumes of ammonia desorbed by the activated carbon 

samples. 

 

The PSCLO and PSNIT groups had adsorption times 

measured every 2 min and 30 s. The adsorption reaction 

in the samples from the PSSUL group occurred slightly 

slower and was therefore measured every 5 min. After 

the beginning of adsorption, the spectral intervals were 

measured (at known time intervals) until the maximum 

adsorption time between the adsorbate (dye) and the 

adsorbent (activated carbon). There was only pure 

methylene blue solution at a concentration of 10-5 ppm 

at the initial time (t0). Thus, the decrease in the 

characteristic absorption band of methylene blue 

demonstrated the reactivity of the material. 

In Fig. S2 (Supplementary Information), the 

PSCLO30 sample showed the same reaction time as 

PSCLO50, but PSCLO50 showed a 100% absorbance 

reduction with the total color reduction of the solution. 

Both PSCLO10 and PSCLO30 presented 97% of 

adsorbed dye, but PSCLO10 was consumed slightly 

faster. The PSCLO50 sample stood out slightly about 

the total degradation of the dye. The measurement of 

reaction time intervals was also made every 2 min and 

30 s in the activated carbon samples for the PSNIT 

group at Fig. S3 (Supplementary Information). The 

highlight in this group was the PSNIT30 sample whose 

performance was better than the others: the dye was 

degraded by 95% in only 2 min and 30 s. The PSNIT10 

and PSNIT50 groups showed equal reaction times 

(17 min and 30 s) and practically the same percentage of 

adsorbed dye. The total reaction time varied with the 

acid percentage of the activator used in the synthesis 

process. 

The adsorption reaction times of the PSSUL group 

were more extensive and variable with the acid synthesis 

concentration, as can be seen in Fig. S4 (Supplementary 

Information). The best performance of this group was 

from the PSSUL10 sample with 99% dye degradation at 

25 min, followed by the PSSUL30 with 94% at 55 min. 

The PSSUL50 sample reached a 50 min reaction time to 

degrade 89% of methylene blue dye. It was observed 

that acid concentration in this group was inversely 

proportional to the degradation performance of the dye 

for this group. 

The adsorption reactions in the liquid phase of the 

PSSUL showed some instability in the concentration of 

the methylene blue bands along with the degradation, 

indicating a possible oscillation of the absorbance dye. 

It was observed that the dye concentration in the spectra 

was higher than the initial solution at some moments. 

The tests were repeated and the results converged at this 

point, probably caused by some instability in the 

equipment during the performed readings. Such a 

situation may also indicate a reversible reaction 

character by the kinetics and thermodynamics of the 

reaction with this material in the initial moments, but 

which tends to stabilize over time and adsorb the dye. 

The pore structure morphology for this group may also 

have influenced these results because this acid can carry 

more hydroxide groups on the surface of the waste 

during the synthesis process to the other acids, and this 

may have reduced the interactions between the 

methylene blue molecules and the adsorbent. This 

possibility of acid treatment influencing the adsorption 

of methylene blue in activated carbon was reported by 

Shaobin Wang et al. (2005). 

In general, the behavior of the samples from this 

same group varied little in terms of reactivity among 

them. Such performance may be associated with 

hydroxide groups and micropores in similar amounts on 

the material surface. But the lowest adsorption of 

methylene blue in PSSUL samples may also have been 

charged on the surface of the material during acid 

treatment, which caused little adsorption of negative 

ions from H2SO4 (SO4
–) on the positive sites on the 

surface, which leads to the material surface being less 

negatively charged, thus making it difficult to adsorb 

positive charge molecules of methylene blue. 

However, the adsorption in all the samples occurred 

in very short intervals of degradation when compared to 

the average time normally evaluated by studies in the 

literature which generally report the evolution of the 

material’s reaction with the dye being measured 

according to the reactivity of the material and the total 

reaction time being given in hours (Matos et al., 2015). 

This short reaction time indicates the reaction potential 
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of the activated carbons produced in the dye adsorption 

and the high reactivity of the material to wastewater 

treatment. 

The liquid phase adsorption performance of a 

commercial activated carbon for respiratory protection 

filter was tested for comparative purposes. The spectrum 

is shown in Fig. S5 (Supplementary Information). The 

commercial sample degraded 95% in 5 min. The sample 

which had similar behavior and slightly superior 

performance to the commercial product in this study was 

the PSNIT30 sample, although the commercial sample 

has a much higher surface area. This confirms the 

hypotheses in the literature that the surface area and total 

pore volume are not the only limitations for the 

adsorption capacity of activated carbons, but also the 

micropore volume, the charge on the material’s surface, 

the chemical surface of the adsorbates, and the pH of the 

solutions (Goyal et al., 2001). The surface area had little 

influence in terms of proportionality of the activator 

concentration to the adsorption presented by the groups 

of activated carbon produced in this study. 

Therefore, it is believed that the differential 

performance of carbonized and acidified samples with 

nitric acid may reveal greater microporous volume and 

the chemical and electrical interaction effects of the acid 

on the carbon surface, which affects the adsorption 

reaction of the material with the dye and ammonia. 

One of the main advantages of using activated carbon 

in adsorbent applications is its post-use. As they are 

normally produced in burning processes, the repetition 

of this process makes them suitable for being discarded 

in nature or even reused, without harming the 

environment. 

 

4. Conclusions 
 

The simultaneous carbonization–activation process 

was efficient for the activated carbon production from 

pumpkin seeds. Activated carbon adsorbed the ammonia 

gas, but the higher adsorption capacity and selectivity 

performance at a low temperature was the activated 

carbon sample activated in 50% nitric acid. The results 

showed their potential to be used as adsorbent material 

with this gas. The material was also shown to be suitable 

for dye adsorption in wastewater with the sample 

activated in 30% nitric acid. The activated carbons 

produced in this study are promising materials to be used 

in cartridges of individual protection equipment for 

ORP by a sustainable technological method with low 

cost and which is feasible on an industrial scale. 
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Figure S1. Particle size distribution of the in natura waste after grinding. 
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Figure S2. UV-vis absorbance spectrum for the 

(a) PSCLO10, (b) PSCLO30 and (c) PSCLO50 samples. 

 

 
Figure S3. UV-vis absorbance spectrum for the (a) PSNIT10, 

(b) PSNIT30 and (c) PSNIT50 samples. 

 

https://revista.iq.unesp.br/index.php/ecletica
https://doi.org/10.26850/1678-4618eqj.v47.1SI.2022.p77-79


Supplementary Information 

revista.iq.unesp.br 

79               Eclética Química Journal, vol. 47, special issue 1, 2022, 77-79 

ISSN: 1678-4618 

DOI: 10.26850/1678-4618eqj.v47.1SI.2022.p77-79 

 
Figure S4. UV-vis absorbance spectrum for the 

(a) PSSUL10, (b) PSSUL30 and (c) PSSUL50 samples. 

 

 
Figure S5. UV-vis absorbance spectrum for the commercial 

sample. 
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ABSTRACT: This paper discloses the effect of the 

surfactant sodium dodecyl sulfate (SDS) in the morphology 

and the photocatalytic activity of BaMoO4 crystals. 

Experimental techniques were applied to study the order-

disorder degree of the samples. First-principles calculations 

were performed at density functional theory level with the 

B3LYP hybrid functional. The morphologies were 

investigated by field emission scanning electron microscopy, 

and the theoretical crystal shapes were obtained through the 

Wulff construction. The photocatalytic activity efficiency of 

the BaMoO4 crystals was tested against the Rhodamine B 

(RhB) dye. In this paper, BaMoO4 synthesized with SDS by 

the coprecipitation method presented a monophasic crystal 

with a disordered structure. In addition, the presence of this 

surfactant generated pores on the surfaces of the material, 

and those pores were responsible for the appearance of the 

adsorptive ability enhancing the adsorption process of the 

RhB dye in the dark, in absence of ultraviolet light. 
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1. Introduction 

In past years, the ceramic’s powders and crystals of 

molybdates were prepared by different methods, such as 

solid-state reaction (Kumar et al., 2020), precipitation 

with calcination in high temperatures (Silva et al., 

2020), and the crystal growth by the “Czochralski” 

process (Khan et al., 2020). However, these synthesis 

methods require high temperatures, long processing 

times, sophisticated equipment with high maintenance 

costs and can even lead to the formation of undesirable 

phases. Therefore, some synthesis methods have been 

developed and used in the preparation of molybdate 

crystals (Lakhlifi et al., 2020; Skutina et al., 2021; Tang 

et al., 2021), such as coprecipitation (Chankhanittha et 

al., 2021; F. Oliveira et al., 2021), conventional 

hydrothermal (Farahpour and Arvand, 2021), 

microwave assisted hydrothermal (Keshari and Dubey, 

2021), and sonochemical (Silva Junior et al., 2021). 

These methods make possible to allay the problems 

present in older methods and obtain crystals of different 

sizes and shapes. 

In particular, the coprecipitation method, which, 

according to the literature, is defined as a process for 

obtaining crystalline materials from the dissolution of 

reagents or soluble precursors in aqueous solution with 

or without the presence of a mineralizer (chemical 

bases) at relatively low temperature, has been used 

recently in the preparation of different molybdates of 

different shapes and sizes (Theiss et al., 2016). 

However, to obtain homogeneous and monophasic 

molybdate crystals by this method, higher temperatures 

(> 100 °C) are necessary due to the low reaction kinetics 

(Kianpour et al., 2013). Studies have been carried out 

using the coprecipitation method, employing surfactants 

as stabilizing agents to aid in the kinetics and, thus, 

reduce the reaction temperature (Kianpour et al., 2016). 

These surfactants act as reactants during the reaction and 

stabilize the colloids. The literature also shows the effect 

of different surfactant ratios in controlling the size of 

microstructures and improving photocatalytic, 

photoluminescent, and antibacterial properties (Ji et al., 

2020; Keerthana et al., 2021; Ray et al., 2018). Among 

the used surfactants, the anionic sodium dodecyl 

sulphate (SDS) acts as a stabilizer protecting the newly 

formed cation or anion nuclei, which has an intrinsic 

preference for the growth of their crystals (Kianpour et 

al., 2013; Luo et al., 2010). 

Among molybdates, barium molybdate (BaMoO4) is 

relevant material in electro-optics due to its green 

luminosity production and electro-optic applications, 

including solid-state lasers and optical fibers. The 

BaMoO4 presents a scheelite structure with 𝐼41/𝑎 space 

group formed by distorted [BaO8] and [MoO4] clusters. 

This material has a high band gap energy (Egap) 

~4.2 eV (Pereira et al., 2021; Sczancoski et al., 2010; 

Xia and Chen, 2010). Due to its poor use of light 

(ultravisible [UV] light) from the solar spectrum, the 

photocatalytic efficiency becomes very low. Various 

techniques have been applied to photogenerate electron-

hole pairs in semiconductors to improve photocatalytic 

performance, such as modeling new crystals through 

BaMoO4 synthesis to form new morphologies efficient 

in enhancing the photocatalytic performance of 

BaMoO4 (Hu et al., 2021; Luo et al., 2008; Xia and 

Chen, 2010). It is possible to correlate the size of 

materials with different or even new properties; thus, 

semiconductors designed with different sizes and 

exposed facets proved to be excellent models to 

promote, for example, photocatalytic and biocide 

studies (Macedo et al., 2018). 

This paper presents a simple method for the synthesis 

of uniform and pure BaMoO4 crystals through the 

coprecipitation method using the SDS to evaluate the 

effects on the crystal morphology in the application of 

Rhodamine B (RhB) degradation. Thus, to endorse the 

experimental results, first-principles calculations were 

used to assess the effects of morphology on the 

degrading processes of the RhB. 

 

2. Experimental sections 

2.1 Synthesis 
 

The BaMoO4 crystals were synthetized by a simple 

coprecipitation method by using barium nitrate 

(Ba(NO3)2, Sigma-Aldrich, 99.0%), sodium molybdite 

dihydrate (NaMoO4･2H2O, Sigma-Aldrich, 99.0%) as 

precursors, and the sodium dodecyl sulfate (SDS, Synth, 

90.0%) as a surfactant. The first step of the synthesis 

involves the dissolution of 1 × 10−3 mol of the 

precursor’s salts, separately, in 100 mL of deionized 

water at 70 °C. Then, 1 g of the surfactant SDS was 

added to the MoO2− ions solution. After these steps, the 

two solutions were mixed under constant stirring. 

Approximately ten washes with deionized water were 

carried out at the end, using a centrifugation process 

(Centrifuge 5804, Eppendorf) to remove the residual 

Na+ and organic ions. The synthetized solid was 

collected and dried in an oven at 65 °C for 24 h. The 

same procedure described above was repeated to obtain 

the pure BaMoO4 crystal by removing the SDS in the 

precursor solution. The samples were named by 

BaMoO4 and BaMoO4-SDS for the synthesis without 

and with SDS, respectively. 
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2.2 Structural and morphological 

characterization 
 

The structure of BaMoO4 crystals was characterized 

by X-ray diffraction (XRD) with Rietveld and micro-

Raman. The morphological change was analyzed 

through field emission-scanning electron microscopy 

(FE-SEM), and the electronic modifications were 

analyzed by UV-visible (UV-vis) spectroscopy. 

 

2.3 Photocatalysis evaluation 
 

To analyze the surfactant’s effect in the 

photocatalytic activity of the BaMoO4 and BaMoO4-

SDS crystals, it was performed the photodegradation of 

the RhB (95%, Mallinckrodt) under UV light. The 

experiment was conducted as follows: 50.0 mL of RhB 

solution (1 × 10−5 mol L−1) were added to the glass 

reactor with 50 mg of the sample. The reactor was taken 

to ultrasound (42 kHz, model 1510) for 5 min in the dark 

to disperse the BaMoO4 crystals in the solution and then 

transferred to the photocatalytic system with 6 UV 

lamps (TUV Phillips, 15 W, and intensity of 254 nm), in 

10 cm from the reactor. Then, to reach the adsorption 

equilibrium, the system remained in the dark for 40 min 

(collecting aliquots at −40, −30, −20, −10 and 0 min) at 

25 °C and in the next step, the lamps were turned on, 

and the aliquots were removed at 20, 40, 60, 80, 110 and 

140 min. After the reaction, the photocatalytic system 

was placed in a plastic tube where they were centrifuged 

at 10,000 rpm for 5 min to remove the catalyst particles 

from the solution completely. The remaining solution 

was analyzed by UV-vis absorption spectroscopy in a 

V-660 spectrophotometer (JASCO). The monitoring of 

the variation in the RhB absorption band with maximum 

λ = 554 nm for photocatalytic tests was investigated. 

 

2.4 Theoretical models 
 

First-principles calculations were performed using 

the CRYSTAL program (Dovesi et al., 2017; 2018) at 

the DFT level associated with the B3LYP hybrid 

functional (Becke, 1988; 1993). To study the electronic 

properties of the BaMoO4 structure, a unit cell model 

was created from the refinement data. In the 

optimization process to obtain the perfect crystal data, 

without defects, the lattice parameters (a, b, c, and α, 

β, γ) and the internal coordinates (x, y, z) of each atom 

were optimized. The electronic band gap energy (Egap) 

value and the Raman frequencies were computed and 

compared with the experimental values. From the 

calculated surface energy (Esurf) values published in the 

literature (M. Oliveira et al., 2016), associated with the 

Wulff’s construction, it was possible to obtain the ideal 

theoretical morphology (in vacuum) for the material 

studied. In addition to this ideal morphology and using 

the methodology developed by us (Andrés et al., 2015), 

it was also possible to obtain the experimental 

morphology in order to compare it with the theoretical 

one. 

 

3. Results and discussion 
 

The XRD and Rietveld refinement was performed to 

verify the crystallinity of the material and its phase and 

structural parameters, as illustrated in Fig. 1. The XRD 

data allowed an analysis of the material structure at 

long-distance. It was possible to index and prove that 

both materials were obtained in their pure phase. As can 

be seen in Fig. 1a, it was not observed the presence of 

secondary phases, since the diffraction peaks are in good 

agreement with those reported for BaMoO4 in ICSD 

nº 250487 (Inorganic Crystal Structure Database, ICSD) 

and the strong and acute peaks indicate that the 

synthesized crystals have good crystallinity. Structural 

refinement was performed using the Rietveld method 

for BaMoO4 and BaMoO4-SDS crystals to confirm that 

the structures belong to the tetragonal structure and 

obtain the lattice parameters, cell volume, and atomic 

coordinates (Fig. 1b). The structural refinement’s 

quality was analyzed using the Rwp, RBragg, Rp e 𝜒2 

statics parameters. Minor deviations of these parameters 

indicate the excellent quality of the structural 

refinement. 
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Figure 1. (a) X-ray diffraction patterns and (b) Rietveld 

refinement for BaMoO4 crystals in the presence and 

absence of SDS. 

 

The BaMoO4 crystals, synthesized by the 

coprecipitation method with and without SDS, were 

obtained in their pure tetragonal phase (space group 

𝐼41/𝑎). Fig. 2 illustrates the tetragonal BaMoO4 structure 

obtained from the refinement data. The crystal lattice of 

this semiconductor is formed by deltahedral [BaO8] and 

tetrahedral [MoO4] clusters and contains four formula 

units per unit cell (Z = 4). 

The analysis of the structural order/disorder degree 

of the BaMoO4 crystals at a short distance was analyzed 

using the micro-Raman spectra. The results can be 

found in Fig. 3 and in Tab. 1, compared with the 

theoretical modes. 

 

 
Figure 2. Tetragonal structure of BaMoO4 and its 

constituent [BaO8] and [MoO4] clusters. 

 

 
Figure 3. Micro-Raman spectroscopy for BaMoO4 

crystals in the presence and absence of SDS. 
 

 

Table 1. Vibrational modes and Raman peaks of BaMoO4 and theoretical values. 

Vibrational modes and symmetry Raman peaks (cm−1) 

Td Lattice mode 𝑪𝟔 𝟒𝒉 BaMoO4 BaMoO4-SDS BaMoO4-Theo 

υ1 (2A1) Ag 893 893 907.95 

υ3 (2F2) Bg 838 838 853.78 

υ3 (2F2) Eg 789 789 818.28 

υ4 (2F2) Eg 360 - 367.90 

υ4 (2F2) Bg 345 - 366.19 

υ2 (2E) Bg, Ag 323 323 332.70 

υf.r* (2F1) Eg - 238 212.10 

υext** Bg 191 - 137.02 

υext** Eg 142 - 122.86 

υext** Bg, Eg 112 - 80.49 

*Free rotation; **external modes. 

 

As can be seen, the Raman bands related to the four 

active modes were observed. The vibrational modes 

observed in the Raman spectra are divided into two 

groups: the internal and external modes. The external 

vibrational modes are composed of tetrahedral [MoO4] 

clusters with strong covalent bonds between Mo−O and 

octahedral [BaO8] clusters (Christofilos et al., 2004; 

Sczancoski et al., 2010). The internal modes are 
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composed of tetrahedral [MoO4] clusters with a rigid 

center of mass. The external modes can be considered as 

reticulated phonons because they result from the 

movement of [BaO8] and [MoO4] clusters, in symmetry 

Td, in the free space generated (Panchal et al., 2006). 

The BaMoO4 samples exhibited all the internal and 

external modes, corresponding to the material’s phase, 

well defined, indicating that the material is highly 

crystalline at close range. On the other hand, the Raman 

spectrum of BaMoO4-SDS showed peaks at 893, 838, 

789, and 323 cm−1, showing only the internal modes, 

demonstrating that this material is partially disordered. 

In addition, the BaMoO4-SDS has peaks corresponding 

to the internal modes, with less intensity, which is a 
characteristic for disordered crystals: the appearance of 

wide Raman bands reflecting on the density of the 

phonon states. These Raman results prove that the use 

of SDS in BaMoO4 synthesis causes changes in the 

crystal structure at a short distance and that even with 

the pure BaMoO4 phase confirmed by XRD results, 

these crystals are disordered. 
The UV-vis spectra for the BaMoO4 and BaMoO4-

SDS samples made it possible to determine each Egap 

value, applying the Kubelka–Munk function. This 

function is generally applied to convert diffuse 

reflectance into equivalent absorption coefficient and is 

mainly used to analyze powder samples and is described 

as (Eq. 1) (Wood and Tauc, 1972): 

𝛼 = 𝐹(𝑅) =
(1−𝑅)2

2𝑅
 (1) 

where F(R) is Kubelka-Munk function; 𝛼 is the abortion 

coefficient, and R is the reflectance. Therefore, the Tauc 

relation becomes (Eq. 2): 

𝐹(𝑅) = ℎ𝑣 = 𝛼(ℎ𝑣 − 𝐸gap)𝑛 (2) 

where n = 0.5 and 2 for direct and indirect transitions, 

respectively, resulting in direct and indirect band 

intervals (Spassky et al., 2005). The graphs of (F(R)hν2) 

versus hν for all samples are shown in Fig. 4. The 

extrapolation of linear regions from these graphs to 

F(R)hν2 = 0 gives the direct band gap values. 

The Egap values show a slight variation between the 

samples. The decrease in the Egap value for the 

BaMoO4-SDS crystals can be attributed to a reduction 

in the local order degree, which may have been caused 

by the creation of new intermediate levels between the 

valence (VB) and conduction bands (CB). This fact can 

be attributed to the presence of the SDS surfactant 

during the synthesis of the material that causes 

distortions in the crystal structure, which endorse the 

experimental Raman spectra. 

 

 
Figura 4. UV-vis spectra for the BaMoO4 crystals in the 

presence and absence of SDS. 
 

The theoretical study of the electronic properties 

corroborates with the UV-vis results. The theoretical 

model of the BaMoO4 is seen as a defect-free structure 

with ideal parameters. This model presented a higher 

Egap value (Fig. 5a) of 5.60 eV. The observed electronic 

transition is direct between the Γ-points of the Brillouin 

zone. The atomic composition of the VB and CB was 

investigated by analyzing the density of states (DOS) 

from all atoms in the structure. As shown in Fig. 5b, the 

VB for BaMoO4 is mainly formed by the contribution of 

the orbitals from the O atoms, and these orbitals are 

mostly antibonding types. On the other hand, the CB is 

composed primarily by the hybridization of the orbitals 

from the Mo and O atoms. This region also has a 

contribution from the Ba atoms. There is the presence of 

bonding and antibonding orbitals. 
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Figure 5. (a) Band structure and (b) Total and projected 

DOS for the BaMoO4 structure. 

 

The morphologies of the BaMoO4 and BaMoO4-SDS 

crystals were investigated by microscopy, and the FE-

SEM images are illustrated in Fig. 6. The BaMoO4 

crystals synthesized without the surfactant present an 

octahedron-shaped morphology with a predominance of 

the (101) surface, with a small contribution of the (112) 

and (110) surfaces (Fig. 6a). Better visualization of these 

surfaces can be seen in the theoretical morphology 

known as Wulff’s crystal. To achieve this theoretical 

morphology, it was employed the methodology 

developed by Andrés et al. (2015), in which used the 

calculated surface energy (Esurf) values associated with 

the Wulff construction (Wulff, 1901). The Esurf of the 

BaMoO4 crystals were reported by M. Oliveira et al. 

(2016). The morphology observed for the crystals 

obtained in the presence of SDS (Fig. 6b) presents the 

same crystal shape as the sample without SDS (Fig. 6a). 

However, morphological differences are observed, such 

as the (112) surface no longer contributes to the 

morphology of the crystal, and the (110) starts to have a 

minor contribution. The major difference between the 

morphologies of BaMoO4 and BaMoO4-SDS is in the 

shape texture. BaMoO4-SDS crystals have a rugged 

surface with the presence of pores. 

 

 
Figure 6. FE-SEM imagens for the (a) BaMoO4 e (b) BaMoO4-SDS crystals. For the comparison, Wulff’s crystals 

are also represented for each sample. 

 

M. Oliveira et al. (2016) reported the synthesized of 

the BaMoO4 crystals also by the coprecipitation method; 

however, they used a temperature of 80 °C, at pH 7. 

They modeled the BaMoO4 surfaces and calculated the 

surface energies. The morphology reported by the 

authors is different from that obtained in this study, with 

a significant presence of the (100), (112), (110), and 

(101) surfaces. Through these results, it is possible to 

observe that the surfaces of this BaMoO4 structure 

present, mainly, different types of clusters for the Ba 

atom, with several oxygen vacancies. 
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Figure 7. (a) Photocatalysis degradation profile of the 

RhB dye in 140 min and (b) first-order kinetics for the 

BaMoO4 crystals in the presence and absence of SDS. 

 

The photocatalytic activity of the BaMoO4 crystals 

was tested against the RhB dye. The analysis started in 

the dark (light off) to test the influence of this 

environment in the photocatalysis process and obtain the 

adsorptive equilibrium. The equilibrium adsorption-

desorption rate of RhB in the dark versus time in the 

presence of BaMoO4 and BaMoO4-SDS was shown in 

Fig. 7a and Fig. 8a. The BaMoO4-SDS degradation 

profiles in the dark showed that this material has one 

more property that has not yet been reported in the 

literature, the adsorptive capacity. The BaMoO4-SDS 

crystals adsorbed about 18% of RhB while BaMoO4 

adsorbed about 1% of RhB. This property is acquired by 

the presence of pores in the crystal surfaces (see FE-

SEM images in Fig. 6a), as illustrated in Fig. 8b. The 

high roughness of this material confers such properties, 

and the adsorptive process added to the photocatalytic 

process certainly makes the material promising in the 

studies of adsorptive and photocatalysis processes. 

These two properties were illustrated in Fig. 8b–c. In 

addition, the BaMoO4-SDS also has a photocatalytic 

performance enhancement, as seen in Fig. 7b. 

Therefore, by analyzing the degradation profile 

shown in Fig. 7a, it can be seen that the presence of SDS 

in the synthesis improved the photocatalytic activity. 

BaMoO4 crystals degraded about 23% in 140 min, while 

the degradation of the BaMoO4-SDS crystals was 45%. 

The process analysis showed that both degradations 

occur in first-order kinetics. The calculated velocity 

constants were k = 1.75 × 10−3 min−1 and k = 2.50 × 10−3 

min−1 for the BaMoO4 and BaMoO4-SDS crystals, 

respectively, as shown in Fig. 7b. So, the increase in 

reaction kinetics indicates that BaMoO4 synthesis in the 

presence of SDS is favorable for materials with 

photocatalytic properties. 

Hence, the control of morphology is of fundamental 

importance because the properties of the materials 

depend on the kind of surfaces that constitute their 

morphology. In the case of the BaMoO4 crystal, the use 

of the SDS favored the increase of the (101) surface and 

caused deformations on the crystal surfaces, 

considerably altering the morphology. This change is 

mainly responsible for creating and improving the main 

properties of the BaMoO4 crystals studied in this work. 
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Figure 8. (a) Photocatalysis and adsorptive degradation 

of the RhB dye. (b) The mechanism proposed for the 

adsorptive process and (c) degradation process at the 

BaMoO4 surfaces on the morphology obtained in the 

presence and absence of SDS. 

 

4. Conclusions 
 

In this study, it was possible to understand how the 

presence of a surfactant, in this case, the SDS, can 

generate changes in the morphology of the BaMoO4 

crystals and how this fact shifts the photocatalytic 

activity. In the case of BaMoO4 synthesized with SDS, 

the presence of this surfactant generated pores on the 

surface of the material’s morphology, and the presence 

of these pores facilitated the adsorption process of the 

RhB dye in the dark, without the presence of UV light, 

and, consequently, a new property for that 

semiconductor was created, the adsorptive capacity. In 

addition to the acquired adsorptive ability, BaMoO4 

synthesized with SDS showed a photocatalytic 

improvement. These results demonstrate that 

morphology control can influence the creation of new 

properties, opening a range of opportunities for further 

studies. 
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ABSTRACT: The influence of Eu3+ cations in the host 

matrix of CaZrO3 was investigated by analyzing its 

luminescence and structural properties. The Ca1-xZrO3:Eux 

crystals (x = 0.01, 0.02, 0.04, and 0.08 mol%) were obtained 

by a simple sol-gel method followed by a soft thermal 

treatment without any surfactant. The structural 

characterization was performed at short-, medium- and long-

distance to verify the effect of the dopant in the host matrix. 

To endorse the experimental results, first-principles 

calculations were performed by using the CRYSTAL 

program associated with the density functional theory. The 

luminescence profile of the sample was investigated by 

analyzing the excitation and emission spectrum monitoring 

the emission at 614 nm and excited at 394 nm, noting that 

the sample Eu-doped with 0.08 mol% has greater emission 

intensity. The color variations of the characteristic emissions 

of Ca1-xZrO3:Eux crystals were evaluated according to the 

Commission Internationale de L’Éclairage, observing a red 

shift for all Eu-doped samples. A general luminescence 

scheme was proposed combining the density of state and the 

band structure calculations. 
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1. Introduction 
 

The chemical and thermal stability of materials with 

perovskites structure (ABO3), such as CaZrO3 (CZ), 

have attracted a lot of attention to be used as a host 

matrix for rare earth cations, thus obtaining efficient 

phosphors with superior luminescent activity (T. 

Almeida et al., 2021; Holzapfel et al., 2020; Khan et al., 

2020; Kunti et al., 2021; Tian et al., 2020). Their 

properties were associated to their structural 

arrangement, electronic structure and the possibility to 

control the doping sites (A or B) (Fukushima et al., 

2020; Navami et al., 2020). The crystalline lattice of the 

CZ is composed by distorted [ZrO6] and [CaO8] clusters, 

in which the Zr atoms are coordinated by six O atoms in 

an octahedral symmetry, while the Ca atoms are 

surrounded by eight O atoms (Eglitis et al., 2020; Zeba 

et al., 2020). 

Rare earth cations can create new defects in the 

forbidden region of the band gap, modifying the 

electronic properties that reflect in the charge transfers 

process and, consequently, in the optical properties (Al 

Boukhari et al., 2020; Chu et al., 2020). In this way, Eu3+ 

cations have a special role for obtaining efficient red 

phosphors, luminescent devices and lasers, for example, 

from the doping of several distinct semiconductor host 

matrices (P. Kumar et al., 2021; Mazzo et al., 2010; 

2014; Ortega et al., 2019; Pinatti et al., 2015). The 

applications of Eu3+ cations are mainly related to its 

nondegenerate 7F0 ground state and nonoverlapping 
2S+1LJ multiplets (Targonska et al., 2019). These cations 

are sensitive to the symmetry of the local doping site 

and, as a consequence, can be used to identify changes 

in the chemical environment (Song et al., 2010; J. Zhang 

et al., 2020). These advantages come from its electronic 

configuration which also results in a pure and strong 

luminescence in the red region when excited in the 

ultraviolet (UV) region of the electromagnetic spectrum 

(Saif and Abdel-Mottaleb, 2007; Smith et al., 2019; 

Tymiński et al., 2020). These materials have too several 

advantages like high Stoke displacement, defined 

spectrum, long lifetime and high stability (Bai et al., 

2013; Lahtinen et al., 2016; van der Ziel and van Uiert, 

1969; Zhou et al., 2021). 

The Ca1-xZrO3:Eux (CZE) samples were studies in 

some previously published papers (Fukushima et al., 

2020; Katyayan et al., 2017; S. Kumar et al., 2018; 

Shimokawa et al., 2015; Tiwari et al., 2015; H. Zhang 

et al., 2008). The method of obtaining these materials 

typically employ high-temperature strategies, such as 

sol-gel combustion method and solid-state reaction, that 

use temperatures above 1200 °C to not obtain secondary 

phases with ZrO2 and nonstoichiometric oxides of Ca 

and Zr (Dubey and Tiwari, 2016; Khan et al., 2021; 

Kunti et al., 2021). These high temperatures also help to 

form a symmetrical chemical environment for the Eu3+ 

cations, increasing their luminescent emission and their 

lifetime decay (Fukushima et al., 2020; Shimokawa et 

al., 2015). Our research group is engaged in the 

investigation of the doping process with Eu3+ cations in 

different semiconductors (Fernandes et al., 2018; Lovisa 

et al., 2016; Pinatti et al., 2019), in particular, CZ and 

CZE samples were previously obtained in another 

experimental works (André et al., 2014; Oliveira et al., 

2017; 2018; Rosa et al., 2015). 

As a continuation of this research line, in this joint 

experimental and theoretical work, we reported the 

excitation-induced tunable photoluminescence (PL) 

properties of CZE, at different Eu3+ cations 

concentration (0.01, 0.02, 0.04, and 0.08 mol% named 

as CZE1, CZE2, CWZ4, and CZE8, respectively). The 

samples were prepared by a simple sol-gel method 

followed by a soft thermal treatment (600 °C) without 

any surfactant. This methodology enabled them to be 

promising materials in inorganic single-emitting 

component regions for optical applications. In addition, 

first-principles quantum-mechanical calculations, at the 

density functional theory (DFT) level, have been used to 

study and predict the structure and the PL, which would 

promote the development of CZE based phosphors. 

 

2. Experimental procedures and computational 

details 
 

Synthesis: CZ and CZE samples were prepared by the 

sol-gel method. The starting reagents used were calcium 

chloride dihydrate (CaCl2·2H2O, 99%, Synth), 

zirconium oxychloride (IV) octahydrate (ZrOCl2·8H2O, 

99.5%, Sigma-Aldrich), europium oxide (Eu2O3, 99%, 

Sigma-Aldrich), ethylene glycol (C2H6O2, 99.9%, J. T. 

Baker), and citric acid monohydrate (C6H8O7·H2O, 

99.5%, J. T. Baker). The first step of the CZ synthesis 

consists in the zirconium citrate’s preparation. For this, 

1 × 10−3 mol of ZrOCl2·8H2O was added to 25 mL (2.5 × 

10−5 mol L–1) of distilled water and add 12 × 10−3 mol of 

citric acid was added to the solution at 60 °C under 

stirring. After this process, 1 × 10−3 mol of CaCl2·2H2O 

was add to this zirconium citrate. During the previous 

processes, the solution was kept under N2 bubbling to 

avoid the formation of unwanted phases, such as ZrO2 

and nonstoichiometric oxides of Ca and Zr. Then, 

ethylene glycol (in the proportion 60:40 in relation to the 

mass of citric acid) was added to the solution and the N2 

bubbling was removed. The temperature of the solution 

was changed to 80 °C to evaporate the resulting water 
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and to form a resin. This resin was sent to the oven, 

undergoing three subsequent thermal processes, 

110 °C/1 h, 250 °C/1 h and 400 °C/1 h. The resulting 

powder was taken to calcination at 600 °C for 1 h, 

obtaining a final white powder. For CZE samples, an 

identical process was performed, changing only that an 

acid solution of Eu3+ cations was added to the zirconium 

citrate before the CaCl2·2H2O. The amount of mass of 

Eu3+ cations to obtain the replacement of Ca2+ by Eu3+ 

cations were carried out respecting the purity of the 

reagents as well as the charge balance. 

Characterizations: The CZ and CZE samples were 

characterized by X-ray diffraction (XRD) with a Rigaku 

DMax 2500PC (Cu Kα λ = 1.5406 Å). Element analysis 

of the samples was performed with a XRF 720 

Shimadzu (4 kV and 80 mA). Micro-Raman 

spectroscopy were performed by the iHR550 

spectrometer (Horiba Jobin-Yvon) coupled to a silicon 

CCD detector and an argon-ion laser (Melles Griot, 

514.5 nm, 200 mW). Diffuse reflectance spectroscopy 

(DRS) measurements were performed using a Varian 

Cary spectrometer model 5G in the diffuse reflectance 

mode, with a wavelength range of 300 to 800 nm and a 

scan speed of 600 nm min−1. Photoluminescence 

measurements at room temperature were performed 

using a 500MSpex spectrometer coupled to a GaAs 

photomultiplier tube (GaAs PMT). A Kimmon He-Cd 

laser (325 nm laser; 40mW maximum power) was used 

as the excitation source for PL measurements. The 

Fluorolog Jobin–Yvon Fluorolog III 

spectrofluorometer, under excitation of a xenon lamp 

was used to obtain the emission (394 nm) and excitation 

(614 nm) spectra as well the decay lifetime. 

Computational details: Computational methods and 

theoretical procedures were utilized to study the bulk 

properties of CZ and CZE structures. Calculations were 

carried out using the periodic ab initio CRYSTAL17 

package, (Dovesi et al., 2018) based on DFT using the 

B3LYP hybrid functional (Becke, 1993; Lee et al., 

1988). In all calculations, the atomic centers were 

described by the standard all-electron basis set for the 

Zr, Ca and O atoms, consisting of (9s)-(7631sp)-(621d), 

(8s)-(6511sp)-(21d), (8s)-(411sp)-(1d), respectively. 

Basis sets for Zr, Ca and O were taken from references 

(De La Pierre et al., 2014; Valenzano et al., 2011), 

whereas an effective core potential (ECP) 

pseudopotential, with 11 valence electrons described by 

(5s5p4d)/[3s3p3d] (VTZ quality) basis sets, was used 

for the trivalent Eu atom. According to the f-in-core 

approximation, the electrons of the 4f shell of Eu3+ are 

incorporated in the pseudopotential (Oliveira et al., 

2018). 

Atomic positions and unit cell parameters were fully 

relaxed with respect to the total energy of the system for 

both CZ and CZE models. The convergence criteria for 

mono- and bielectronic integrals were set to 10−8 

Hartree, while the RMS gradient, RMS displacement, 

maximum gradient, and maximum displacement were 

set to 3.0 × 10−4, 1.2 × 10−3, 4.5 × 10−4, and 1.8 × 10−3 

a.u., respectively. Regarding density matrix 

diagonalization, the reciprocal space net was described 

by a dense mesh consisting of a shrinking factor set to 

4×4×4 in the Monkhorst–Pack method (Monkhorst and 

Pack, 1976). The accuracy of the evaluation of the 

Coulomb and exchange series was controlled by five 

thresholds, whose adopted values were 10−8, 10−8, 10−8, 

10−8 (ITOL1 to ITOL4), and 10−14 (ITOL5). 

Herein, the CZ model was calculated considering the 

conventional unit cell with orthorhombic symmetry 

(Pcmn) containing 20 atoms. A supercell (2×1×2) 

expansion simulated the crystalline structure of the CZE 

model, containing 79-atoms, where two Eu3+ cations 

replaced two Ca2+ cations leading to the creation of one 

Ca2+ vacancy to neutralize the charges corresponding to 

a doping concentration of 12.5%. The neutrality in CZE 

model can be described as CaZrO3 + Eu(III) → 

Ca0.8125Eu0.125ZrO3(VCa), where VCa represents a calcium 

vacancy. It is worth to mention that such charge 

compensation mechanism is commonly used to 

investigate rare-earth doping in perovskites (Kunti et al., 

2021). 

A schematic representation in terms of component 

clusters, the cation replacement and vacancy formation 

mechanisms associated with the doping process, and the 

crystalline structure of CZ and CZE models are 

illustrated in Fig. 1. Here, it is important to point out that 

Eu-doping configurational tests were carried out to 

select the most favorable sites for Eu-doping. 

 

 
Figure 1. Schematic representation of unit cell 

expansion and Eu doping in CZ matrix models 

constructed for DFT calculations. [ZrO6], [CaO8] and 
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[EuO8] clusters in brown, green, and purple colors, 

respectively. 

 

3. Results and Discussion 
 

In order to understand the modifications generated at 

long-range in the CZ and CZE samples, XRD 

diffractograms were performed. XRD shows that all 

materials have similar profiles linked to the 

orthorhombic CZ structure (Fig. 2a), according to card 

No. 97463 in the Inorganic Crystal Structure Database 

(ICSD) (Levin et al., 2003). The orthorhombic CaZrO3 

structure belongs to the space group Pcmn, being 

formed by distorted [CaO8] and [ZrO6] clusters. There 

was no secondary phase formation, indicating that the 

Eu3+ cations substitution process takes places 

successfully. For comparison, the theoretical lattice 

parameters and the unit cell volume calculated at the 

B3LYP level of theory were listed in Tab. 1. 

 

 

 
Figure 2. (a) X-ray diffraction and (b) micro-Raman spectra for CZ and CZE samples. 

 

Table 1. Lattice parameters and unit cell volume of CZ 

and CZE obtained by theoretical simulations and ICSD 

values. 
Sample Cell Volume Lattice Parameters 

  α = β = γ = 90° (Pcmn) 

 Å3 a (Å) b (Å) c (Å) 

CZ 258.52 5.594 8.021 5.7611 

CZE (12.5%)* 1063.72 11.322 8.069 11.641 

ICSD 97463 257.45 5.583 8.007 5.759 

*Corresponds to 2×1×2 conventional cells. 

 

An analysis of the results shows that the substitution 

of Ca2+ by Eu3+ cations induce variations in the atomic 

coordinates of the O atoms, indicating the existence of 

structural and electronic distortions in the [CaO8], 

[ZrO6], and [EuO8] clusters, as well as changes in the 

lattice parameters and an expansion of cell parameters 

of ~2.86% is found in the unit cell volume. 

Complementing the XRD analysis, micro-Raman 

measurements were performed to analyze the short-

range modifications caused by the substitution of Eu3+ 

cations in the CZ structure (Fig. 2b). There are 13 active 

modes in the Raman spectrum, which are related to 

specific vibrations of the [ZrO6] clusters (André et al., 

2014; Evangeline et al., 2017; Rosa et al., 2015; Zheng 

et al., 2004). For the CZE samples, it was observed with 

the increase in the concentration of Eu3+ cations, there is 

a loss of definition in the modes located at 177, 184, 205, 

221, and 229 cm−1. This is due to the increase in local 

disorder caused by the propagation of distortions of 

[EuO8] clusters in the CZ structure. 

 

The average crystallite size (D) obtained through the 

Scherrer’s equation (Eqs. 1 and 2) and the lattice strain 

(ε) (Eq. 3) value are shown in Tab. 2. 

𝐷 =
0.89𝜆

(𝛽𝑐𝑜𝑠𝜃)
 (1) 

𝛽 = √𝛽𝑜𝑏𝑠
2 − 𝛽𝑠𝑡

2  (2) 

𝜀 =
𝛽

(4𝑡𝑎𝑛𝜃)
 (3) 

where D is the average crystallite size, λ is the X-ray 

wavelength (0.15406 nm), θ is the Bragg angle, βobs is 

the experimental full width at half maximum (FWHM) 
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of the sample, and βst is the FWHM of LaB6 standard 

(Muniz et al., 2016). These parameters, D and 𝜀, were 

also obtained by the Williamson-Hall (WH) plot 

obtained through Eq. 4: 

𝛽𝑐𝑜𝑠𝜃

𝜆
=

𝐾

𝐷
+

4𝜀

𝜆
𝑠𝑒𝑛𝜃 (4) 

where β is the FWHM of the peak, D is the crystallite 

size, λ is the 0.154056 nm, K is 0.89, and ε is the lattice 

strain (Manohar et al., 2021; Mesquita et al., 2021). 

For the CZE samples, a tendency to decrease the D 

value is observed in reference to the CZ sample. This 

behavior is due to the low concentrations of the rare 

earth that can inhibit the growth of CZ crystallite (El-

Bahy et al., 2009; Jayachandraiah et al., 2015). In 

general, the doping process induces a structural and 

electronic strain in the crystalline lattice, evidenced by 

the increase in the ε value (W. Liu et al., 2017). To 

confirm the amount of Eu3+ cations in the CZE samples 

(spectral line Lα, energy 5.849 keV), X-ray fluorescence 

(XRF) measurements (S4 Pioneer, Bruker) were 

performed (Tab. 2). It is observed that the real 

concentration Eu3+ cation is very close to the nominal 

one, confirming the replacement of Ca2+ by Eu3+ cations. 

 

Table 2. Crystallite size (D) and lattice strain (ε) obtained by Scherrer’s equation and Williamson-Hall model, and 

Eu concentration obtained by XRF analysis. 

Sample 
Scherrer Williamson-Hall [Eu] (%) 

D (nm) 𝜀 (10–3) D (nm) 𝜀 (10–3) Nominal Real 

CZ 31.72 16.98 24.30 18.82 0.0000 0.0000 

CZE1 31.58 13.81 20.91 32.53 0.0010 0.0008 

CZE2 31.64 30.76 23.76 30.09 0.0020 0.0018 

CZE4 31.68 34.93 31.48 16.44 0.0040 0.0041 

CZE8 31.42 56.64 17.98 34.07 0.0080 0.0077 

 

The band gap energy (Egap) value was obtained 

through the Kulbelka-Munk (Yang and Kruse, 2004) 

calculation for CZ and CZE samples. The Egap values of 

the samples were 5.75, 5.66, 5.62, 5.60, and 5.35 eV for 

the samples CZ, CZE1, CZE2, CZE4, and CZE8, 

respectively. The Egap value obtained for the CZ sample 

is close to the value obtained in previous works (Maurya 

et al., 2016; Yamaguchi et al., 2000; Zeba et al., 2020). 

This decrease occurs because the incorporation of Eu3+ 

cations in the CZ structure causes new defects and 

intermediate levels close to the valence (VB) and 

conduction (CB) bands, which leads to a decrease in Egap 

(Cyriac et al., 2018; Gupta et al., 2015a). 

 

 

 
Figure 3. Band structure and DOS profiles for (a) CZ, and (b) CZE materials. 

 

The calculated band structure and density of states 

(DOS) projected for the atoms and orbitals of CZ and 

CZE models are displayed in Fig. 3. An analysis of the 

band structure and projected DOS presented here 

reveals that the direct transition is produced along the k-

points Γ-Γ (000 to 000) and U-Γ (101 to 000) from the 

top of the VB to the bottom of the CB of pure and doped 

models, respectively. The Egap values is 6.23 eV to CZ 

and 5.09 eV to CZE 12.5% model. As regard the 
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obtained Egap values, experimental and theoretical 

values were compared evidencing a good agreement. 

An analysis of the DOS, the main contribution to the 

valence band maximum (VBM) region is due to the 2p 

(px, py, and pz), orbitals from the O atoms and a 

predominance of the 4d (dz
2, dx

2
-y

2, dxy, dxz, dyz) and 4f 

(f3, fxz
2, fyz

2, fz(x
2
-y

2
), fxyz, fx(x

2
-3y

2
), fy(3x

2
-y

2
)) states formed 

by Zr and Eu atoms is found in the conduction band 

minimum (CBM) region, situated from 6.23 to 9 eV 

(CZ) and from 5.09 to 6.5 eV (CZE 12.5%) and with a 

small contribution from Ca orbitals. 

Additionally, the Fig. 4 summarizes the electronic 

density maps of the CZ and CZE (12.5%) models 

obtained from the optimized wavefunction, where the 

electronic density matrix was resolved as isolines that 

describe the density in an area. These electronic density 

maps were described along the Ca−O, Zr−O, and Eu−O 

bonds direction of the models, which corresponds more 

specifically to the diagonal (110) plane (Fig. 4). 

 

 

 
Figure 4. Electron density maps in the diagonal plane (110) for (a) CZ, and (b) CZE materials. 

 

To observe the possible application of CZE samples 

as a red emitter, the samples were first excited with a 

laser at 325 nm (Fig. 5). The CZ sample has a broadband 

emission profile, characteristic of a multiphonic process, 

involving several intermediate energy states (Gupta et 

al., 2015b). The maximum emission of the CZ sample is 

found in approximately 447 nm, in the blue region, 

which is the result of internal charge transfers of O 2p to 

Zr 4d orbitals (Oliveira et al., 2017). For CZE samples, 

the broadband emission characteristic of the CZ sample 

is no longer observed, giving space to the specific 

emission of Eu3+ cations. The characteristic emission 

 bands of the Eu3+ cations are located at 584, 596, 615, 

659, and 705 nm can be assigned to the transitions 
5D0→7FJ, J = 0, 1, 2, 3, and 4, respectively (D’Achille et 

al., 2021; Gnanam et al., 2021; M. Liu et al., 2021; Riul 

et al. 2021). The intensity of the CZE samples is 

proportional to the concentration of Eu3+ cations, being 

the CZE1 sample the least intense and CZE8 sample the 

most intense. The maximum emission of CZE samples 

was attributed to the 5D0→7F2 transitions (615 nm). The 

appearance of these transitions confirms the CZ 

structure as a good host matrix for sensitizing the red 

emission of Eu3+ cations. 
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Figure 5. Emission spectra of CZ, and CZE materials 

excited at 325 nm. 

 

Figure 6a shows the excitation spectra of CZE 

samples under 614 nm emission band. At 280 nm a 

broad band related to the CZ matrix is observed. 

According to Dorenbos (2003), this emission related to 

the charge transfer band (CTB) of O2− to Eu3+. It is also 

observed the emissions referring to the transitions of the 

Eu3+ cations for CZE samples. These transitions are 
7D0→5DJ (J = 2, 3 and 4), 7F0→5LJ (J = 6, 7 and 8) and 
7F0→5GJ (J = 4, 5 and 6) (Vieira et al., 2019). The most 

intense is located at 394 nm referring to the 7F0→5L6 

transition. This transition in specific is useful for 

applications in near-UV and LEDs (Hou et al., 2012; 

Singh et al., 2021). The emission spectra of CZE 

samples excited at 394 nm was shown in Fig. 6b. It is 

observed that the transitions 5D0→7FJ, J = 0, 1, 2, 3, and 

4, become more defined, locating at 565, 592, 616, 655, 

and 703 nm (Chen et al., 2000; X. Liu et al., 2007; Song 

et al., 2010). The red emission at 616 nm is due to the 
5D0→7F2 electric-dipole transition that is parity 

forbidden and hypersensitive by the crystalline field 

(Baig et al., 2021; Bharathi et al., 2021; Wu et al., 

2021). The 5D0→7F1 magnetic-dipole transition is 

located at 592 nm it is not affected by the environment 

(Kalu et al., 2021; Lakde et al., 2021; Peipei et al., 

2021). So, the integrated area ratio of the peaks 

corresponding to 5D0→7F2 and 5D0→7F1 transitions 

provides information on the changes in the environment 

around the Eu3+ cations (Parchur and Ningthoujam, 

2012). The values obtained for the samples are 4.92, 

4.91, 4.81, and 4.66 for the samples CZE1, CZE2, 

CZE4, and CZE8. These values are very close and 

indicate that the Eu3+ environment changes to a higher 

symmetry site with the increase in the concentration of 

Eu3+ cations, since the ratio of the relative areas 

decreases with the increase of the Eu-doping. (P. 

Almeida et al., 2021; Mazzo et al., 2010; Pinatti et al., 

2015). 

 

 
Figure 6. (a) Excitation and (b) emission spectrum of 

CZE samples monitoring the emission at 614 nm and 

excited at 394 nm, respectively. 

 

Figure 7a depicts the decay behavior of the 5D0→7F2 

transition for Eu3+ cations in the CZE samples, using the 

emission and excitation wavelengths fixed at 614 and 

394 nm, respectively (He et al., 2018; Parchur et al., 

2011). These life times were fitted using a 

monoexponential function (Eq. 5): 

𝑦 = 𝑦0 + 𝐴1𝑒𝑥𝑝 (
𝑡

𝜏
) (5) 

where 𝑦 is the intensity; 𝑦0 is the intensity at the 0 ms; 

𝐴1 is the amplitude and 𝜏 is the lifetime of the 5D0→7F2 

transition (Nyein et al., 2003). 
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Figure 7. (a) Decay curves and (b) Log of the decay 

curves 5D0→7F2 transition of CZE samples. 

 

Excited state τ values determined were 1.16, 1.14, 

1.12, and 1.06 ms to CZE1, CZE2, CZE4, and CZE8, 

respectively. The excited state τ values of Eu3+ cations 

decreased with increasing doping concentration due the 

exchange interactions between activated ions pairs and 

the higher concentration of the activated ions density 

around quenching center. Figure 7b shows the 

monoexponential decay of the samples fitted with an 

exponential function as the Eq. 5. The energy transfer 

rate between Eu3+–Eu3+ (𝜂𝐸𝑢−𝐸𝑢) was calculated by the 

Eq. 6: 

 

𝜂𝐸𝑢−𝐸𝑢 = 1 −
𝜏𝐶𝑍𝐸

𝜏𝐶𝑍𝐸𝐻
 (6) 

where τCZE is the lifetime of CZE samples and τCZEH is 

the lifetime of the sample with higher τ (in this case, 1.16 

ms to CZE1) (Kunti et al., 2021). 

The obtained 𝜂𝐸𝑢−𝐸𝑢 values were 1.72, 3.44 and 

8.62, for CZE2, CZE4 and CZE8, respectively. The 

distance between Eu3+ cations decrease with increasing 

concentration of these cations in the CZ host matrix, 

causing an energy transfer more efficient and allowing 

new decay channels (Kunti et al., 2021). These extra 

channels provide new radiative and nonradiative 

transition probabilities decreasing the lifetime (İlhan 

and Keskin, 2018). The efficiency of energy transfer 

(𝜂𝐸𝑇) (Eq. 7): 

𝜂𝐸𝑇 = 1 −
𝜏𝐶𝑍𝐸

𝜏𝐶𝑍
 (7) 

where τCZE is the lifetime of CZE samples and τCZ is the 

lifetime of the CZ sample (2.57 in this case) (Li et al., 

2007). 

The obtained  𝜂𝐸𝑇 values were 0.5486, 0.5564, 0.5642, 

and 0.5875 for the CZE1, CZE2, CZE4, and CZE8, 

respectively. As expected, the energy transfer efficiency 

(𝜂𝐸𝑇) goes hand in hand with the increase in the 

concentration of Eu3+ cations. 

Figure 8 shows the color variations of the 

characteristic emissions of the samples according to the 

Commission Internationale de L’Éclairage (CIE) (Du et 

al., 2013). As a characteristic emission, for the CZ 

sample its emission in blue region is observed at 325 and 

yellow at 394 nm. However, for the CZE samples, with 

the increase in the amount of Eu3+ cations in the CZ host 

matrix, a displacement towards the red region is 

observed, reaching almost pure red emission in both 

excitations. 

In addition, theoretical methodology can contribute 

to an explanation for the optical properties, since a 

reduction in the band gap value and the PL emissions of 

CZ and CZE models. In order to clarify the effect of Eu3+ 

cations on the PL emissions of CZ, it was proposed a 

general scheme combining the DOS and band structure 

calculations for CZ and CZE models, as shown in 

Fig.  9. 

 

https://revista.iq.unesp.br/index.php/ecletica
https://doi.org/10.26850/1678-4618eqj.v47.1SI.2022.p90-104


Original article 

revista.iq.unesp.br 

98               Eclética Química Journal, vol. 47, special issue 1, 2022, 90-104 

ISSN: 1678-4618 

DOI: 10.26850/1678-4618eqj.v47.1SI.2022.p90-104 

 
Figure 8. CIE coordinates of CZ and CZE samples 

excited at 325 and 394 nm. 

 

 
Figure 9. Scheme representing (a) the electronic 

structure for pure CZ and CZE materials; (b) 

photoinduced electron transfer mechanism from the VB 

to the CB to light emission. 

 

Doping with Eu3+ cations generate a new electron 

density distribution, being located on the oxygen-

mediated [EuO8]–[ZrO6] interaction, to which is trapped 

in empty Zr (4d) and Eu (4f) orbitals. Initially, the Eu3+ 

cations doping process induces the formation of VCa 

sites that perturb the VB energy levels and promotes the 

insertion of 4f orbitals in the CBM; in other words, 

intermediate energy levels are introduced in the Egap 

region, reducing the energy required for electron 

transfer (Fig. 9a). The next step is the photoinduced 

electron transfer from the VB to the CB, generating an 

electron–hole pair within the CZE electronic structure 

(Fig. 9b). This step is crucial because it offers a new 

interpretation of the optical properties of a material. 

In addition, a deeper insight into the PL emission of 

pure and Eu-doped structures, based on the effective 

mass of electrons (me*) and holes (mh*), following the 

procedure reported in a previous study is presented in 

Tab. 3 (Silva et al., 2020). Such an approach is effective 

in discussing the photoinduced properties of solid-state 

materials once the effective mass allows one to ascertain 

the mobility of the charge carriers. 

 

Table 3. Calculated effective mass of electrons (me*) 

and holes (mh*) of CZ and CZE 12.5%. 
Effective mass of electrons and holes CZ 

me* mh* me*/ mh* 

0.31 2.46 0.126 

Effective mass of electrons and holes CZE 

me* mh* me*/ mh* 

0.49 0.94 0.516 

 

The calculated values reported in Tab. 3 for CZ and 

CZE indicates that excited electrons are lighter than 

generated holes. Also, it was observed that Eu-doping 

induces a heavier (lighter) electron (hole) effective mass 

in comparison to CZ, increasing the hole mobility that 

contributes to increase the electron–hole recombination 

rate, explaining the superior PL properties of CZE. This 

fact can be associated with the bonding character of 

Eu−O interactions in comparison to Ca−O summed to 

the presence of VCa in the doped crystalline structure due 

to the electron density redistribution that governs the 

band gap narrowing for doped samples, as confirmed in 

Fig. 9. Once the Eu−O bonds are more covalent than 

Ca−O, the band curvature is affected, and the effective 

mass of electrons and holes is controlled from doping. 
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4. Conclusions 
 

In this paper, a simple sol-gel method followed by a 

soft thermal treatment without any surfactant was 

applied to investigate the influence of Eu3+ cations in the 

host matrix of CZ. The Ca1-xZrO3:Eux crystals (x = 0.01, 

0.02, 0.04, and 0.08 mol%) were characterized by XRD 

and the patterns confirms that the Eu-doped samples 

present an orthorhombic structure as the CZ pure. 

However, the results shows that the replacement of Ca2+ 

by Eu3+ cations induce local defects in the lattice causing 

distortions in the [CaO8], [ZrO6], and [EuO8] clusters, as 

well as changes in the lattice parameters and an 

expansion of cell parameters. The micro-Raman results 

disclosure that the presence of Eu3+ cations in the host 

matrix of CZ caused a loss of definition in the modes 

located at 177, 184, 205, 221, and 229 cm−1 due to the 

increase in local disorder. The real amount of Eu3+ 

cations in the CZE samples was verified by XRF and the 

results confirms the presence of Eu3+ cations in the host 

matrix. The substitution of Ca2+ by Eu3+ cations also 

affected the Egap value in which a decrease with the 

increase of Eu3+ cations amount in the host matrix was 

observed, and this result was endorsed by the first-

principles calculations. According to the DOS analysis, 

the electronic density in the VBM is due to the O 2p 

orbitals and a predominance of the Zr 4d and Eu 4f 

orbitals is observed in the CBM. The luminescence 

profile of the sample was investigated, and the results 

show that the intensity of the CZE samples is 

proportional to the concentration of Eu3+ cations, being 

the CZE1 sample the least intense and CZE8 the most 

intense. The appearance of the 5D0→7F2 transitions (615 

nm) confirms that the CaZrO3 structure is a good host 

matrix for sensitizing the red emission of Eu3+ cations. 

From the experimental and theoretical results, it was 

proposed a general luminescence scheme for the CZE 

samples. 
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ABSTRACT: The disposal of substances pollutant, 

such as methylene blue dye (MB), into wastewater, 

arouses the interest of technologies to remove these 

pollutants. The discoloration of MB by photocatalysis 

and using femtosecond laser-irradiated Fe2O3 

materials as photocatalysts proved to be a promising 

way to treat this pollutant. Here, Fe2O3 obtained by the 

conventional hydrothermal process and heat-

treatment, subsequently femtosecond laser-irradiated 

treatment. Materials obtained with a mixture of 

irradiated α-Fe2O3 and ε-Fe2O3 phases revealed lower 

crystallinity than irradiated α-Fe2O3 samples. The 

irradiation treatment and the increase in crystallinity 

were crucial to improve the performance of α-Fe2O3 irradiated sample in the discoloration of MB, which reached 90% in 

75 min of dye solution exposure under UV irradiation. The irradiation treatment proved to allow greater exposure of the 

particle surfaces, which coalesced and presented a greater distribution of medium size, indicating a more heterogeneous 

morphology in the irradiated samples. As a result, there was an increase in active sites due to the density of defects 

generated, which facilitated the dye degradation process. 
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1. Introduction 
 

Hematite (α-Fe2O3) and ε-Fe2O3 are two of the five 

known iron oxide polymorphs which have different 

crystal structures under normal conditions of 

temperature and pressure (CNTP) (Machala et al., 

2011; Tuček et al., 2015). Under the conditions of α-

Fe2O3, the material is more thermodynamically stable 

and abundant within the polymorphs of Fe2O3 

(Machala et al., 2011; Sivula et al., 2011). During the 

period of expansion of the past Inca α-Fe2O3 was found 

on the surface of magmatic rocks due to years of 

aerobic weathering processes (Gialanella et al., 2010; 

Sepúlveda et al., 2019), among its first uses as 

pigments in primitive ruptured paints in prehistoric 

eras (Marean et al., 2007) and more recently as dyes 

(Carneiro et al., 2018). α-Fe2O3 can be obtained by 

thermally induced structural transformations of other 

oxides (Gialanella et al., 2010; Gonçalves et al., 2011) 

and/or other Fe2O3 polymorphs (Darezereshki, 2011; 

Ding et al., 2007; Zboril et al., 2002), as well as from 

reactions between iron salts (II) and (III) (Lassoued et 

al., 2017; Papynov et al., 2018; Sivula et al., 2010). 

ε-Fe2O3 was discovered in 1934 by Forestier and 

Guiot-Guillain (1934), but only received the name ε-

Fe2O3 29 years later by the researchers Schrader and 

Büttner (1963). Its structural characterization was 

performed for the first time in 1998 by Tronc et al. 

(1998) and in 2005 Kelm and Mader (2005), Sakurai et 

al. (2005) developed a model called refinement to 

interpret the X-ray crystal structure of ε-Fe2O3, 

obtained in coherence with some experimental data, 

such as lattice parameters and electron density maps 

(Shabalina et al., 2018). The first thin films of ε-Fe2O3 

were prepared in 2010 (Gich et al., 2010); however, 

their chemical stability was determined eight years 

later at pressures up to 27 GPa (Sans et al., 2018). ε-

Fe2O3 is a metastable material between the polymorphs 

α-Fe2O3 and/or γ-Fe2O3 (Tronc et al., 1998). Although 

it is found as biogenic nanoparticles mixed with 

magnetite and is present in some clays, this material is 

not very abundant in nature. Additionally, its particles 

have a low surface energy, which guarantees the 

formation and existence of ε-Fe2O3 (Gich et al., 2007; 

McClean et al., 2001; Petersen et al., 1987). 

Since α-Fe2O3 is an n-type semiconductor with a 

gap energy between 1.9 and 2.2 eV, it is considered as 

a potential sunlight converter, which uses solar energy 

to generate clean energy, such as electricity or green 

fuel (e.g., H2) (Gratzel, 2001; Tamirat et al., 2016). For 

such reason, it has been widely studied in 

photoelectrochemical processes (Sivula et al., 2010; 

2011; Trindade et al., 2020). Fe2O3 materials can also 

be applied as carrier of drugs to treat cancer cells 

(Liong et al., 2008; Mandriota et al., 2019), lithium 

batteries (Gu et al., 2013), gas sensors (Gou et al., 

2008), pigments (Carneiro et al., 2018) and dyes 

(Ahmed et al., 2013). Many studies have used Fe2O3 

materials as photocatalysts or adsorbents in the 

degradation of dyes present in industrial effluents 

(paper, textiles, leather) especially methylene blue 

(MB), which is resistant to chemical and biological 

treatment and can produce more toxic substances than 

the dye itself during its chemical decomposition 

(Ahmed et al., 2013; Crini, 2005; Sharma et al., 2011). 

The versatility of Fe2O3 materials is attributed to 

their distinct crystal structures, resulting in different 

physicochemical properties (Machala et al., 2011; 

Sakurai et al., 2009). What makes these materials 

versatile with interesting technological applications is 

the greater understanding of the association of their 

properties with their crystal structures, especially 

concerning the effects of structural order and disorder 

(Pottker et al., 2018). It is known that the structural 

modification on the surface of particles irradiated using 

femtosecond laser technology improves the structural 

and ablation properties of the material (Keller, 2003; 

Sugioka and Cheng, 2014). Such modification can be 

assigned to the creation of cations and oxygen 

vacancies that modulate the electronic states in the 

valence band of the material (Assis et al., 2020). This 

study evaluates the performance of thermally treated 

and femtosecond laser-irradiated Fe2O3 samples for the 

discoloration of methylene blue (MB) dye under UV 

irradiation. 

 

2. Experimental 
 

The Fe2O3 particles were obtained by the 

conventional hydrothermal process, according to a 

procedure similar to that reported by Gou et al. (2008): 

2 mmol of Fe(NO3)3∙9H2O, 4 mmol of trisodium citrate 

dihydrate and 5 mmol of urea were dissolved 

separately in 10 mL of deionized water and 

subsequently dissolved and placed in a hydrothermal 

reactor under constant stirring. The hydrothermal 

process was carried out at 160 °C for 10 h. After 

cooling, the precipitates were washed with deionized 

water and alcohol, and then dried at 90 °C for 6 h. 

Lastly, they were heat-treated at 860 and 900 °C for 

30 min. 

Fe2O3 samples were irradiated by a Ti:Sapphire 

laser (CPA-2001 system from Clark-MXR Inc.), at 775 

nm, 150 fs (FWHM) and a repetition rate of 1 Hz. The 

samples were irradiated with an average power of 300 

mW and positioned within the Rayleigh range. The 
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experiment was carried out following Assis et al. 

(2020). The nonirradiated samples were named 

hematite+epsilon-Fe2O3 (EPHE) and hematite-Fe2O3 

(HE). After irradiation, they were denominated EPHEI 

and HEI, respectively. 

The thermal behavior of Fe2O3 particles obtained by 

the hydrothermal process were evaluated by 

thermogravimetry (TGA) and differential thermal 

analysis (DTA), and then heated up to 1300 °C in an 

O2 atmosphere with a flow of 50 mL min–1 

(NETZSCH - Cell 409). 

The structural characterization of Fe2O3 samples 

was performed by X-ray diffraction (XRD), Raman 

spectroscopy and scanning electron microscopy 

(SEM). For the XRD measurements, a diffractometer 

(Shimadzu) with Cu Kα radiation (λ = 1.5406 Å) was 

used, and the XRD patterns were acquired with steps of 

0.02° and an angular range of 10 to 110°. The data 

obtained were analyzed using the Rietveld (1969) 

method with the aid of the general structure analysis 

system (GSAS) software (Von Dreele and Larson, 

1994). Raman spectra were obtained in the range of 

100–1000 cm–1 using a Senterra spectrometer (Bruker) 

coupled to a 785 nm He–Ne laser excitation source 

with a power of 1 mW and a microscope with a 20× 

objective. 

The morphology of the Fe2O3 samples was analyzed 

through images obtained in a Zeiss – Supra 35 

scanning electron microscope. The images were 

obtained by secondary electron detection (ETD, 

Everhart – Thornley detector) with a 10 kV incident 

beam. Transmission electron microscopy (TEM) 

images were captured in high resolution (HRTEM) 

using an FEI – Tecnai F20 microscope operating in the 

brightfield. One μm-scale scanning electron 

micrographs were used to construct the frequency 

histogram and the mean size modal distribution curve 

versus particle size. The count of 150 particles was 

inspected and the measurements were performed by the 

ImageJ software (Schneider et al., 2012) using the 

linear method. 

The UV-Vis spectra were obtained over a range of 

800–300 nm in diffuse reflectance mode at room 

temperature using a Varian Cary 5G spectrometer. 

The photocatalytic activity of nonirradiated and 

irradiated Fe2O3 samples was tested for the 

discoloration of the methylene blue dye (MB; 

[C16H18ClN3S]; 99.5% purity, Mallinckrodt) in relation 

to the exposure time under UV irradiation. The loss of 

MB coloration was observed by aliquots of Fe2O3 

materials dispersed in the dye solution under UV 

radiation at different collection times. The 

concentration of the aqueous solution of MB used in 

the photocatalysis experiments was provided by a 

calibration curve. The maximum absorbance (λ maximum) 

measurement of MB was performed using a UV-Vis 

spectrometer (V-660 Jasco). As the dye follows Beer’s 

Law (Grasse et al., 2016), the calibration curve 

provided the aqueous concentration of the MB index in 

the photocatalytic study of nonirradiated and irradiated 

Fe2O3 materials. 

The experiments were carried out by dispersing 50 

mg of the sample in 50 mL of MB solution in an 

ultrasound bath inside an open reactor with a controlled 

temperature of 20 °C and water circulation. The 

sample-dye adsorption process was performed by 

stirring this dispersion in the dark for 30 min. The 

photocatalytic system was obtained by illuminating this 

dispersion with six UV lamps (TUV Philips, 15 W with 

maximum intensity of 254 nm). Aliquots were 

removed at time zero and other predetermined times (5, 

10, 20, 30, 45, 60 and 75 min), the absorbance changes 

were measured by a spectrophotometer (V-660 Jasco), 

while the photocatalytic stability of the sample with the 

best performance was obtained from the recycling test 

results. 

 

3. Results and discussion 
 

There are four thermal events according to the TGA 

and differential thermal DTA curves of the Fe2O3 

sample obtained by the conventional hydrothermal 

process, as showed in Fig. 1. The TGA curve 

demonstrates that the thermal stability of the sample 

occurred at 500 °C. The processes with energy 

absorption were identified at 110 °C, which 

corresponds to the sample dehydration, and at 650 °C, 

indicating that above this temperature hematite 

presents paramagnetic behavior (Liu et al., 1997). At 

243 and 860 °C, two exothermic events were observed, 

the first due to the release of gases and organic 

impurities from the process of particle obtention, and 

the second attributed to the ε-Fe2O3 → α-Fe2O3 phase 

transition (Dézsi and Coey, 1973). From this result, it 

was possible to perform the heat-treatment of the Fe2O3 

samples. 

The vibrational modes of Raman showing EPHE 

and EPHEI were identified as shown in Fig. 2. The 

vibrational modes of single-phase ε-Fe2O3 samples 

phase are not identified in the literature yet. The 

determination of the wavenumbers referring to the ε-

Fe2O3 phase was performed from a Lorentzian fit of the 

Raman scattering spectrum bands. Thus, it 

was possible to distinguish the vibrational modes of the 

ε-Fe2O3 and α-Fe2O3 phases (López-Sánchez et al., 

2016). The vibrational modes agree with the 

https://revista.iq.unesp.br/index.php/ecletica
https://doi.org/10.26850/1678-4618eqj.v47.1SI.2022.p105-119


Original article 

revista.iq.unesp.br 

108               Eclética Química Journal, vol. 47, special issue 1, 2022, 105-119 

ISSN: 1678-4618 

DOI: 10.26850/1678-4618eqj.v47.1SI.2022.p105-119 

vibrational modes reported by López-Sánchez et al. 

(2016), the ε-Fe2O3 phase has 117 active Raman 

vibrational modes: 29A1 + 30A2 + 29B1 + 29B2, 

considering that the same has space group Pna21. 

Sample EPHE (Fig. 2a) showed nine active modes of 

the ε-Fe2O3 phase in wavenumbers in the range 120 to 

600 cm–1. 

According to the literature (Faria et al., 1997), α-Fe2O3 

exhibits seven modes of active phonons (2A1g + 5Eg) 

allowed in Raman. Sample EPHE shows two modes in 

226 and 496 cm–1, attributed to A1g, and others in 245, 

293, 410 and 610 cm–1, assigned to Eg. 

The changes observed in the Raman vibrational 

modes of the irradiated samples (Fig. 2b) are a 

consequence of the irradiation treatment, which 

provided an increase in the structural disorder within 

the crystal lattice of samples EPHEI and HEI. 

Compared to the nonirradiated samples, the high full-

width at half-maximum (FWHM) values of the Raman 

bands, and the absence of active vibrational modes of 

the irradiated samples (Tab. 1) indicated that the 

irradiation treatment caused a distortion in the crystal 

lattice of the samples and an increase in the defect 

density, leading to the breaking of Fe–O bonds. These 

results contribute to changes in the physicochemical 

properties of the irradiated samples. 

 

 
Figure 1. Differential thermal curve (olive line) and 

TGA curve (magenta line) of Fe2O3 sample obtained 

by the conventional hydrothermal process. 

 

 

 
Figure 2. Raman spectra for (a) nonirradiated samples and (b) irradiated samples. 

 

X-ray diffraction patterns of samples EPHE and 

EPHEI (Fig. 3) presented peaks indexed to the 

inorganic crystal structure database (ICSD) number 

415250 (Kelm and Mader, 2005; Sakurai et al., 2005) 

and 15840 (Blake et al., 1966), and corresponding to ε-

Fe2O3 to α-Fe2O3 phases, respectively, characterizing 

these materials as multiphase. These phases have an 

orthorhombic (Pna 21) and rhombohedral (R-3cH) 

structure with eight and six molecular formulas per unit 

cell (Z = 8 and 6), respectively. On the other hand, 

samples HE and HEI are formed by α-Fe2O3 and are 

considered monophasic. This preferential formation is 

due to the increase in temperature to 900 °C during the 

heat-treatment when compared to samples EPHE and 

EPHEI. 
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Table 1. Wavenumbers (cm –1) and full widths at half maximum (FWHM) for nonirradiated and irradiated samples. 
Wavenumber 

(cm–1) EPHE 

FWHM 
(cm–1) EPHE 

Wavenumber 

(cm–1) EPHEI 

FWHM 
(cm–1) EPHEI 

Wavenumber 

(cm–1) HE 

FWHM 

(cm–1) HE 

Wavenumber 

(cm–1) HEI 

FWHM 

(cm–1) HEI 

123.4 ± 0.1 11.3 122.7 ± 0.3 13.8 - - - - 

147.9 ± 0.2 9.6 148.2 ± 0.2 13.3 - - - - 

172.1 ± 0.3 10.5 172.0 ± 0.3 11.1 - - - - 

226.1 ± 0.3 6.8 225.7 ± 0.3 2.8 225.8 ± 0.1 8.9 224.9 ± 0.1 8.7 

244.9 ± 0.2 6.2 - - 244.1 ± 0.2 11.5 245 ± 2 45.0 

293.8 ± 0.2 13.8 293.9 ± 0.3 4.9 292.8 ± 0.1 14.7 292.1 ± 0.1 15.7 

326.7 ± 0.3 7.1 325.4 ± 0.2 6.0 - - - - 

349.6 ± 0.2 6.2 350.6 ± 0.1 4.7 - - - - 

375.5 ± 0.2 12.2 373.9 ± 0.1 5.1 - - - - 

409.1 ± 0.3 16.6 409.3 ± 0.3 6.9 409.3 ± 0.1 15.6 408.9 ± 0.1 19.0 

443.0 ± 0.3 8.4 - - - - - - 

560.9 ± 0.2 7.8 - - - - - - 

590.0 ± 0.2 6.7 - - - - - - 

495.3 ± 0.3 32.5 494.3 ± 0.2 10.4 494.0 ± 2.1 25.2 493.0 ± 0.3 22.3 

610.1 ± 0.2 9.9 - - 610.5 ± 0.2 12.2 608.7 ± 0.1 19.1 

 

 
Figure 3. X-ray diffraction patterns for the ε-Fe2O3 and α-Fe2O3 of the samples heat-treated at 860 and 900 °C for 

30 min. In (a) nonirradiated samples and (b) irradiated samples. 

 

The results of structural refinement by the Rietveld 

(1969) method are shown in Tab. 2 and Fig. 4. Table 2 

presents the lattice parameters and the percentage of 

phases of the samples before and after the irradiation 

treatment, whereas Fig. 4 shows typical Rietveld 

refinement graphs. It is possible to observe that the 

diffraction patterns calculated and obtained in Fig. 3 

are related to high structural order or long-range and 

well-defined peaks. 

The results of two lattice parameters presented in 

Tab. 2 are consistent with the previous studies of α-

Fe2O3 and ε-Fe2O3 phases (Blake et al., 1966; Kelm 

and Mader, 2005; Sakurai et al., 2005). In this study, 

EPHE and EPHEI showed 62% of the ε-Fe2O3 phase, 

while HE exhibited crystallized α-Fe2O3 as the 

preferential phase, which is indicative of the increase 

in temperature without heat-treatment. These results 

refer to the nonlinearity of the adjustment parameter 

(Rw %) for different processes of crystallization, 

solubilization and recrystallization. Microstrain results 

from irradiated samples (EPHEI and HEI) revealed 

higher values than those shown by nonirradiated 

samples (EPHE and HE), demonstrating that the 

irradiation treatment favored or increased the density 

of defects and stress in the crystalline lattice of the 

materials. 
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Table 2. Parameters obtained from Rietveld refinements of Fe2O3 samples. 
Sample EPHE EPHEI HE HEI ε-Fe2O3

* α-Fe2O3
** 

α
-F

e 2
O

3
 Lattice parameters (Å) 

a = b 5.035 5.037 5.040 5.035 - 5.038 

c 13.733 13.738 13.758 13.748 - 13.772 

V (Å3) 301.50 301.93 302.70 301.89 - 302.72 

Crystallite size (Å) 0.45 0.40 0.84 0.73 - - 

Microstrain 1282.7 2215.5 921.9 1390.9 - - 

% Wt fraction 0.376 0.379 1.000 1.000 -  

ε-
F

e 2
O

3
 Lattice parameters (Å) 

a 5.091 5.091 - - 5.071 - 

b 8.781 8.789 - - 8.736 - 

c 9.465 9.470 - - 9.418 - 

V (Å3) 423.09 423.74 - - 417.25 - 

Crystallite size (Å) 0.25 0.25 - - - - 

Microstrain –599.4 –1741.8 - - -  

% Wt fraction 0.624 0.621 - - - - 

Rw% 9.414 8.943 - - - - 

 

 
Figure 4. Rietveld refinement plot of nonirradiated in (a, c) and (b, d) irradiated samples. 
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Figure 5 illustrates the UV-Vis spectra in diffuse 

reflectance mode in the 250–800 nm range for the 

nonirradiated and irradiated samples. The absorbance 

close to the 570 nm region shows that these samples 

have application as absorbers (Sarma et al., 2020). 

The calculations performed to determine the energy 

of the samples in the forbidden band (Egap) were 

obtained according to Wood and Tauc (1972) and Chen 

et al. (2013). The indirect transitions of the samples 

resulted in Egap values consistent with the literature 

(Pandey et al., 2014). Compared to the nonirradiated 

samples, EPHEI and HEI showed a reduction in their 

Egap value, indicating that the irradiation treatment 

caused the samples to present a more conductive 

behavior with greater structural disorder at medium-

range (Pinatti et al., 2020). It can be attributed to the 

presence of electronic levels within the forbidden band, 

which are associated with crystalline lattice 

disturbances. These results corroborate those obtained 

in the Raman and XRD analyses. 

 

 

 

 
Figure 5. UV-Vis spectra in (a, b) and energy gap. In (c, e) nonirradiated samples and (d, f) irradiated samples. 

 

The electron micrographs in Fig. 6 reveal that 

sample EPHE has a heterogeneous morphology with 

clusters in the shape of irregular plates and equiaxed 

structures on the plates. In turn, HE showed that the α-

Fe2O3 particles have a homogeneous morphology with 

clusters of irregular plaques. The same change was 

observed in EPHEI and HEI, even though the 

irradiation treatment allowed the formation of equiaxed 

particles on the agglomerated structures, including, in 

some regions of the samples, the phenomenon of 

coalescence resulting from diffusion processes of 

matter during irradiation (Anastasiou et al., 2016). 
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Figure 6. Micrographs of the nonirradiated in (a, c) and (b, d) irradiated samples. 

 

The frequency histograms in Fig. 7 reveal an 

average size of 41 and 40 nm for the particles of 

samples EPHE and HE, respectively, and 49 and 54 nm 

for the irradiated samples EPHEI and HEI, 

respectively. It can be noted that the mean size 

distribution curve of the EPHE and EPHEI particles 

was very similar to each other. On the other hand, the 

mean size distribution curve of HEI became much 

broader than that of HE, indicating that there was an 

increase in the morphological heterogeneity. 

Images obtained from high-resolution micrographs 

(HRTEM) of the nonirradiated and irradiated samples 

are displayed in Fig. 8. The crystallinity of the samples 

made it possible to obtain the indexation of the 

Fe2O3 phases. The insets show that the nonirradiated 

and irradiated samples crystallized in the ε-Fe2O3 and 

α-Fe2O3 phases, corroborating the results of the Raman 

spectra and XDR patterns. The irradiation treatment 

increased the defect density and avoided the ε-Fe2O3 to 

α-Fe2O3 phase transition in sample EPHEI. 
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Figure 7. Frequency histograms of the nonirradiated in (a, c) and (b, d) irradiated samples. 

 

 

 
Figure 8. Transmission electron microscopy imagens of the nonirradiated in (a, c) and (b, d) irradiated samples. 
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The MB calibration curve (Fig. 9) was constructed 

from the solutions of the standard MB at pH = 7. The 

concentration of aqueous solutions of MB was 

estimated by measuring the absorbance at maximum 

wavelengths of MB (λmaximum= 668 nm) (Sheng and 

Mat Yunus, 2005). The adjustment of the experimental 

data was given by a straight line with a regression 

coefficient of R2 = 0.9990. The calibration curve 

allowed us to determine that the concentration of 

52.33 mg L–1 of MB had a maximum absorbance value 

of 1.0067, which is in agreement with the value found 

by Al-Rubayee et al. (2016). This was the 

concentration used in the photocatalysis test. 

 

 
Figure 9. Calibration curve methylene blue at different 

concentrations 5–80 mg.L-1. 

 

The photocatalytic activity of nonirradiated and 

irradiated Fe2O3 samples was compared when MB was 

subjected to UV irradiation, in the absence of 

photocatalysts and under the same experimental 

conditions. Figure 10a shows the relationship among 

the equilibrium adsorption concentration, the 

concentration after irradiation (CN/C0) and the 

irradiation time. The MB sample without catalyst 

showed much lower discoloration than catalyzed 

samples. The discoloration of MB in 75 min 

photocatalyzed by HEI was 90%. However, HE 

showed a similar discoloration profile in the absence of 

a catalyst. In relation to the dye adsorption, samples 

EPHE and EPHEI reached values of 60 and 35% in the 

dark, respectively. In contrast, HE (α-Fe2O3) adsorbed 

20% of the dye within 30 min of exposure in the dark. 

Allawi et al. (2020) studied the adsorption process of 

100 mg of α-Fe2O3 catalyst in a 20 mg L-1 MB solution 

at pH 7.6. They observed that in 6 min of exposure in 

the dark, the dye adsorption was ~10 %. Considering 

the results achieved by samples EPHE and EPHEI, it is 

possible to then infer that the presence of the ε-Fe2O3 

phase significantly influenced the MB adsorption 

process. During the photocatalysis of EPHE and 

EPHEI, the discoloration was 8 and 15%, respectively, 

which is in accordance with the results obtained by 

Ahmed et al. (2013). These findings show that samples 

EPHE and EPHEI behave as MB adsorbent materials, 

being promising for MB photocatalysis. Regarding the 

photocatalytic activity of HEI, the recycling test was 

performed following the procedure described Trench et 

al. (2018). The effect of photocatalytic activity of each 

cycle is shown in Fig. 10c. It is possible to observe that 

the photocatalytic activity of this sample decreased 

over the cycles, which can be attributed to the loss of 

material due to washing processes for dye removal. On 

the other hand, such sample (HEI) showed good 

stability as a photocatalyst. 

 

 
Figure 10. Photocatalytic discoloration of MB (52.33 mg L−1). In (a) without catalyst and Fe2O3 nonirradiated and 

irradiated materials and (b) Determination of the rate constant by log plot and (c) Recycle test of HEI sample. 
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For the MB dye, the solution concentration was 

considered very low. In order to quantitatively compare 

the obtained results, a kinetic study was carried out 

using a pseudo first-order reaction from the Langmuir–

Hinshelwood model, as showed Eq. 1 (Guettaï and 

Amar, 2005): 

 

k′t =  −ln (
𝐶𝑁

𝐶0
) (1) 

 

where k’ and t represent the constant reaction rate and 

the irradiation time, respectively. Figure 10b shows the 

kinetic behavior of MB discoloration. The reaction 

constants found were 2.6710–2, 1.3910–3, 1.8010–3, 

1.8710–3, 3.5210–4 min–1 for HEI, EPHEI, HE, 

EPHE and the sample without catalyst, respectively. In 

comparison with the sample without catalyst, EPHE, 

EPHEI and HE showed an increase in the reaction 

speed in one order of magnitude, while HEI exhibited a 

constant speed with two orders of magnitude. 

Figures 6 and 8 illustrate the morphology of the 

nonirradiated samples (EPHE and HE) under thermal 

treatment. It could be observed that the femtosecond 

laser-irradiation treatment led to the formation of 

different morphologies in EPHEI and HEI that 

interfere with the absorption and electron transfer 

processes, presenting different photocatalytic activities 

(Vu et al., 2019). The lower photocatalytic activity was 

due to the reduction of active reaction sites in the 

studied samples (Huang et al., 2015). The irradiation 

treatment directly affected the surface of the particles, 

causing an increase in the density of surface defects, 

thus improving the photocatalytic properties of these 

samples. 

This result is very significant compared to the 

development of α-Fe2O3 materials as a photocatalyst 

for MB discoloration at room temperature, which 

reached a value of 78% in 6 h of UV irradiation (Vu et 

al., 2019). In fact, the irradiation treatment proved to 

be very efficient to improve the photocatalytic activity 

of sample HEI, composed solely of α-Fe2O3. This 

improvement was also attributed to the defects 

generated on the surface of the particles (Vu et al., 

2019). 

The α-Fe2O3 present in the studied samples has 

short diffusion length of the minority carriers (holes) 

(Wheeler et al., 2012) and low conductivity of the 

majority carriers (electrons) (Kennedy and Frese 

Junior, 1978), resulting in difficulty in separating the 

photogenerated electron-hole pairs, and consequently 

influencing the photocatalytic activity results of these 

materials. On the other hand, ε-Fe2O3 is a material 

difficult to be obtained in isolation (Danno et al., 2013; 

Dézsi and Coey, 1973; Shanenkov et al., 2019; Wang 

et al., 2019). For such reason, its attention is more 

focused on its interesting magnetic properties, as the 

anisotropic particles in this material can lead to the 

formation of a single magnetic domain, generating a 

large coercive field compared to other Fe2O3 

polymorphs, and thus having advanced magnetic 

applications (Jin et al., 2004; Machala et al., 2011). 

However, in this study it was very interesting to 

investigate the photocatalytic properties of this material 

against α-Fe2O3. 

Since the photocatalytic process of HEI occurred by 

the transfer of surface charge, there was a consequent 

increase in defect density (Huang et al., 2015). Such 

sample absorbed energy of the photon generated by 

UV irradiation to form charge carriers (electron-hole 

pairs) that participate in the photooxidation on the 

sample surface. Minority carriers form very reactive 

hydroxy radicals (∙OH), which are the main active 

species used to decolor MB (Zhao et al., 2004). In 

contrast, majority carriers captured by dissolved 

oxygen in the MB solution form superoxide radicals 

anions (∙O2
–) and/or peroxide radicals, which have the 

ability to break down MB molecules until mineralizing 

them into CO2 and H2O (Vadivel et al., 2014). In turn, 

∙O2
– reacts with minority carriers of the sample, 

forming peroxides and releasing oxygen and/or active 

OH radicals and peroxides, partially contributing to the 

degradation of MB (Huang et al., 2015). 

 

4. Conclusions 
 

The optical properties of femtosecond laser-

irradiated α-Fe2O3 materials showed a reduction in 

their band gap energy values and exhibited a more 

conductive behavior than nonirradiated samples due to 

the presence of electronic levels within the band gap 

range generated by the resulting defect density caused 

by irradiation. 

According to the XRD patterns, the structural 

characterization showed that the high crystallinity of 

samples HE compared to EPHE influenced the increase 

in their photocatalytic activity due to the presence of 

the ε-Fe2O3 phase. On the other hand, the femtosecond 

laser irradiation treatment improved the photocatalytic 

properties of EPHEI compared to the nonirradiated 

sample (EPHE). A significant reduction in the Raman 

modes was observed for irradiated samples, indicating 

that their structural disorder at medium range was a 

result from the increase in the density of defects 

generated on the surface of their particles. Therefore, it 

was proven that sample HEI presented the best 

photocatalytic property, which was attributed to the 
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synergistic effect of the high crystallinity of the α-

Fe2O3 phase and the generation of defects caused by 

the irradiation treatment. 

The morphological aspect of the samples revealed 

agglomerated particles that impaired the improvement 

of the photocatalytic properties of the samples. 

Therefore, samples EPHE, HE and EPHEI behaved as 

adsorbent materials for MB discoloration. These 

materials have the potential to be used together with 

photocatalysts to enhance MB degradation in a short 

period of dye exposure. The mean particle size 

distribution curve of HEI was wider than that of HE, 

indicating an increase in the morphological 

heterogeneity of the irradiated sample, which 

consequently favored the increase in its catalytic 

activity. The phase indexing in the HRTEM images 

showed that the irradiation treatment was not 

energetically favorable to the transformation of ε-Fe2O3 

to α-Fe2O3, but sufficiently effective for the generation 

of surface defects in the particles of the irradiated 

samples (HEI and EPHEI). 
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ABSTRACT: In this work, we investigated the effect of the coupling 

of the Zr-metal-organic framework (MOF) and SnO2 and its potential 

for application as photoelectrode in solar cells. Coupling was performed 

by mechanical mixture followed by heat treatment. The effect of adding 

two amounts of Zr-MOF (25 and 50 wt%) on morphology and 

photoelectrochemical properties was investigated. The results of the J-V 

curves show that the coupling of 25 wt% Zr-MOF with SnO2 improved 

the charge transfer characteristics under light irradiated in 1.6 times 

compared to the pure SnO2. 
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1. Introduction 
 

Due to the scarcity of natural resources, the current 

technological society faces great challenges in relation 

to its own sustainability (Zhang and Sun, 2019). As a 

result, the demand for new clean and efficient 

technologies with lower environmental costs is 

growing. In this context, solar energy technology 

stands out, which can be easily found on almost the 

entire planet. 

Research involving solar energy conversion into 

electricity has drawn a lot of attention, especially in 

photovoltaic devices such as solar cells (Kojima et al., 

2009). Among them, dye-sensitized solar cells 

(DSSCs) stand out for their low cost and simple 

fabrication method (Bora et al., 2018; Chen et al., 

2018). However, such devices have low power 

conversion efficiency (PCE), which represents a barrier 

to the use of these devices in the photovoltaic market 

(Bashar et al., 2019; Selvaraj et al., 2018). Low PCE is 

related to the electronic, morphological and optical 

properties of materials used as photoanodes. 

Currently, the most used n-type metal oxide as 

photoanode in DSSC is TiO2 (Agbo et al., 2016; 

Bhogaita et al., 2016). Nevertheless, its material 

displays some deficiencies, such as low electron 

mobility and photic instability (W. Yang et al., 2017). 

In addition, to removing organic compounds of the 

TiO2 synthesis of it, it is necessary to use high 

temperatures, which results in higher production costs 

(W. Yang et al., 2017). A great candidate to replace the 

conventional TiO2 layer is the SnO2 (Jiang et al., 2017; 

Ke et al., 2015) due to its wide bandgap, high optical 

transmittance in the visible, high mobility 

(240 cm2 V−1 s−1), excellent optical and chemical 

stability, and low-cost preparation at low temperature 

(Mathiazhagan et al., 2020). However, as the SnO2 

conduction band-edge is more positive than TiO2 

(∼ 400 mV), under 1 Sun simulated light (AM 1.5 G) 

using a solar simulator, the Fermi quasi-equilibrium 

level will shift down to the redox potential of the liquid 

electrolyte, resulting in a lower open-circuit voltage 

compared to TiO2 (Suresh et al., 2018). These 

characteristics may make the DSSCs that use SnO2 as 

photoanode achieve PCE of only 1.2% while DSSCs 

working with TiO2 have a PCE of 5.9% (Concina and 

Vomiero, 2014). In order to overcome these limitations 

presented by SnO2, an alternative found is the 

modification of its surface (Qian et al., 2009). 

The unique characteristics of the metal-organic 

frameworks (MOFs) such as high porosity, high 

surface area, accessible active internal energy 

migration pathways that can increase the electron 

transfer and reduce the charge recombination, have 

motivated research about their photocatalytic and 

photovoltaic applications (Zhang et al., 2020). MOFs 

are hybrid materials built by combining the organic 

ligands and metal nodes through coordinate bonds 

(Bao et al., 2016; H. Liu et al., 2016; Li et al., 2016). 

Recently, our group investigated the coupling of 

ZnO and Zr-MOF to develop a photoanode to be 

applied in DSSCs. In this research, the results showed 

that the ZnO electrode with 25 wt% Zr-MOF has the 

ability to potentiate charge transport and inhibit charge 

recombination, making it a promising photoelectrode 

for solar cells (da Trindade et al., 2021). 

Based on our previous results, in this present work, 

we seek to report the investigation of the Zr-

MOF/SnO2 coupling in the SnO2 morphology and its 

photoelectrochemical properties for future application 

in photoanodes for DSSCs. 

 

2. Experimental 
 

2.1 SnO2 synthesis 
 

The coprecipitation method in aqueous media was 

used to prepare the SnO2 particles. In this method, 

SnCl2∙2H2O (6.77 g, Vetec) was mixed with deionized 

H2O (30 mL) under constant stirring at room 

temperature. After dissolution, H2O2 (35 mL, Synth) 

and KOH solution (35 mL/2 mol L–1, Synth) were 

added. The precipitate was washed with deionized 

water until pH = 7. The obtained material was oven-

dried at 60 °C for 8 h. 

 

2.2 Zr-MOF synthesis 
 

The metal-organic framework synthesis (Zr-MOF) 

was performed by a solvothermal method as related in 

our previous work (da Trindade et al., 2019). The 

ZrCl4 (1.4 mmol, Aldrich) and terephthalic acid 

(1.4 mmol, Aldrich) were previously dissolved in N, 

N-dimethylformamide (DMF, 99.8%, Aldrich) and the 

solution was put in an autoclave. The reaction was kept 

in a greenhouse at 125 °C for 24 h. After this time the 

obtained precipitate was washed with methanol and 

dried at 60 °C. 

 

2.3 Electrode preparation 
 

The electrodes were prepared with SnO2 and Zr-

MOF using two mass ratios of Zr-MOF, according to 

Tab. 1. The electrode preparation procedure was 

performed according to the literature (da Trindade et 
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al., 2018; 2020a). Viscous pastes were prepared by 

mixing the desired particles with ethanol (200 μL) and 

sonicated for 30 min. After this, deionized water 

(60 μL) was added, and the mixture was sonicated 

again for 30 min. The obtained suspensions were 

applied onto fluorine-doped tin oxide (FTO) substrates 

in an area of 1 cm2 using a micropipette. The films 

were allowed to dry at 25 °C for 1 h, and then 

calcined at 400 °C for 1 h, at heating and cooling rates 

of 0.1 °C min–1. 

 

Table 1. Samples designation and composition. 
Sample designation SnO2 (g) Zr-MOF (g) 

SnO2 0.0125 - 

Zr-MOF 0.0125 - 

SMOF25 0.0094 0.0031 

SMOF50 0.0062 0.0062 

 

2.4 Samples characterization 
 

All samples were characterized by X-ray diffraction 

(XRD, Rigaku detector (CuKα, λ= 0.15406 nm), 

Fourier-transform infrared spectroscopy (FTIR, Bruker 

EQUINOX 55 spectrometer), thermogravimetry (TG) 

analysis (TA Instruments Q-50 apparatus), field 

emission gun–scanning electron microscope (FEG-

SEM, ZEISS model 105 DSM940A instrument, 

10 keV), UV–Vis spectra (Cary 5 G [Varian] 

apparatus) and Brunauer–Emmett–Teller (BET) 

surface area measurements (Micromeritics TriStar II 

3020). 

The photoelectrochemical measurements were 

performed in a three-electrode cell where the prepared 

electrode, Pt wire and Ag/AgCl electrode have been 

used as working, counter and reference electrodes, 

respectively. This cell had a quartz glass window, and 

the electrolyte was acetonitrile solution 

with LiI (10 mmol L–1), I2 (1 mmol L–1), and LiClO4 

(0.1 mol L–1). The current density-voltage (J-V) curves 

of the samples have been analyzed for both illuminated 

and dark conditions using an Autolab PGSTAT302 N 

potentiostat and a Newport Sol3A Class AAA solar 

simulator with a 100 W Xenon lamp. 

 

3. Results and discussion 
 

Figure 1 shows the XRD patterns of all samples. 

The SnO2 presents 2θ diffraction angles at 26.4, 33.7, 

37.8, 51.6, 54.2, 62.1, 65.5 and 78.6 degrees and (110), 

(101), (200), (211), (220), (310), (301) and (321) 

diffraction planes, respectively, corresponding to rutile 

structure (JCPDS nº: 41-1445) (Debataraja et al., 

2017). The Zr-MOF presents the XRD patterns that 

correspond with the Zr-MOF (UiO-66) reported 

previously (Luan et al., 2015; da Trindade et al., 

2020b). When the SnO2 sample is modified with 25 or 

50 wt% of Zr-MOF, it can be observed that the 

referring to SnO2 and an absorption peak appears 

between 5 and 10°, which confirms the presence of Zr-

MOF in both samples. It is also possible to observe that 

in the 50 wt% sample the presence of other diffraction 

peaks referring to Zr-MOF. This result was expected 

since there was a significant increase in the Zr-MOF 

mass amount compared to the 25 wt% sample. 

 

 
Figure 1. XRD patterns of SnO2, Zr-MOF, SMOF25 

and SMOF50 samples. 

 

Figure 2 shows the FTIR and TG analyzes of SnO2, 

Zr-MOF and modified samples. At the SnO2 FTIR 

spectrum (Fig. 2a) we observed bands in 3300 and 

1640 cm–1 that can be attributed to the O–H stretching 

of adsorbed water molecules. In addition, the band at 

640 cm–1 refers to framework vibrations of SnO2 (Zhan 

et al., 2013). The Zr-MOF spectrum presents 

broadband at 3300 cm–1 that is due to the O–H 

stretching from water molecules in the MOFs (Zango 

et al., 2020). The well-defined bands at 1570 and 

1387 cm–1 refer to the C=O and C–N stretching modes, 

respectively. The CAr, δ-H stretching modes and the 

Zr6(OH)4O4 cluster appears at 750 and 666 cm–1, 

respectively (Butova et al., 2020; da Trindade et al., 

2020b). For the modified samples, SMOF25 and 

SMOF50, similar spectra can be noted. Characteristic 

peaks of the SnO2 and Zr-MOF were observed at both 

modified samples. However, the intensity of the bands 

increases with increasing the MOF amount in the 

sample. These results affirm that the Zr-MOF was 

successfully coupling into the SnO2 corroborating the 

https://revista.iq.unesp.br/index.php/ecletica
https://doi.org/10.26850/1678-4618eqj.v47.1SI.2022.p120-129


Original article 

revista.iq.unesp.br 

123               Eclética Química Journal, vol. 47, special issue 1, 2022, 120-129 

ISSN: 1678-4618 

DOI: 10.26850/1678-4618eqj.v47.1SI.2022.p120-129 

data observed by XRD. TG measurements were carried 

out to verify the thermal stability of SnO2, Zr-MOF and 

modified samples (Fig. 2b). The pure SnO2 sample 

presents only one stage of weight loss of 7% from 25 

to 80 °C due to the removal of adsorbed water 

molecules. Zr-MOF has three stages of mass loss with 

first up to 125 °C which is attributed to desorption of 

physisorbed water, the second between 125−550 °C 

which may be due to the removal of the solvent (DMF) 

and the dehydroxylation of the zirconium oxo-clusters 

(X. Liu et al., 2016) and the last stage (550-700 °C) is 

due to the Zr-MOF decomposition (Q. Yang et al., 

2018). When 25 wt % Zr-MOF is coupled to SnO2 

(SMOF25), it can be observed that there is an increase 

in thermal stability in relation to the pure SnO2 sample. 

In the SMOF25 sample, there is an initial weight loss 

of approximately 3% that can be attributed to the 

removal of adsorbed water molecules. The increase in 

the initial thermal stability also is observed for the 

SMOF50 sample with a mass loss of 6%. However, at 

500 °C the beginning of the Zr-MOF decomposition is 

observed. These data show that adding 25 wt % Zr-

MOF to the SnO2 sample works as a thermal stabilizer. 

 

 

 
Figure 2. FTIR spectra (a) and TG curves (b) of SnO2, 

Zr-MOF, SMOF25 and SMOF50 samples. 

 

FE-SEM images for all samples are shown in Fig. 3. 

SnO2 particles (Fig. 3a) tend to form agglomerates with 

irregular shapes. The Zr-MOF sample has an 

octahedral shape with different sizes as reported in the 

literature (Waitschat et al., 2018). When 25 wt% Zr-

MOF is coupled to the SnO2 (Fig. 3c), there is a 

tendency to form clustered structures which are 

potentiated by increasing the Zr-MOF mass ratio 

(Fig. 3d). In the SMOF50 sample, the formation of 

agglomerates of smaller and fewer uniform particles is 

observed. 
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Figure 3. FE-SEM images of SnO2 (a), Zr-MOF (b), 

SMOF25 (c), and SMOF50 (d) samples. 

 

Through the FE-SEM images, the particle size was 

estimated, Fig. 4a–d. The SnO2 and the Zr-MOF 

samples present approximately 95.4 and 36 nm particle 

sizes, respectively. When these two samples are 

coupled, the particle sizes obtained are approximately 

99.6 and 148.7 nm for SMOF25 and SMOF50 samples, 

respectively. These results reveal that the coupling of 

SnO2 with Zr-MOF provokes an increase in particle 

size. The N2 adsorption-desorption isotherms of SnO2, 

Zr-MOF, SMOF25 and SMOF50 particles are shown 

in Fig. 4e. The SnO2 and SMOF25 samples show 

typical type IV isotherms with a hysteresis loop and, 

the Zr-MOF and SMOF50 samples present typical 

type I isotherms. Type IV isotherms are characteristic 

of mesoporous nature and the hysteresis loop 

commonly suggests improved pore size and pore 

connectivity of the synthesized samples (Mallesham et 

al., 2020). While type I isotherms indicate the 

microporous nature of the synthesized samples (Q. 

Yang et al., 2018). It can be hypothesized that the 

reduction of the specific surface area with the addition 

of the Zr-MOF implies that the SnO2/Zr-MOF coupling 

results in the reduction of the vacancies in the Zr-MOF 

(Fu et al., 2019). 
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Figure 4. Particle sizes of SnO2 (a), Zr-MOF (b), 

SMOF25 (c), and SMOF50 (d), and typical N2 

adsorption–desorption isotherm (e) of the samples. 

 

The BET surface area and pore diameter are 

presented in Tab. 2. These results show that when SnO2 

is coupling with Zr-MOF the surface area increases 

from 68.44 m2 g–1 to 158 and 270.3 m2 g–1 with the 

addition of 25 and 50 wt% of Zr-MOF (SMOF25 and 

SMOF50), respectively. In contrast, the pore diameter 

decreases with coupling. These changes observed in 

the surface area and pore diameter can be caused by the 

increase of clusters formation as a result of the increase 

of the particles sizes. 

 

Table 2. BET surface area and pore diameter, and FE-

SEM average particle size of the samples. 

Sample 

BET FE-SEM 

Surface area 

(m2 g−1) 

Pore diameter 

(nm) 

Average particle 

size (nm) 

SnO2 68.44 4.5 95.4 

Zr-MOF 985.2 10.0 36.0 

SMOF25 158.0 4.3 99.6 

SMOF50 270.3 3.4 148.7 

 

The Tauc method was used to determining the 

bandgap (Coulter et al., 2017), Eq. 1: 

(𝛼һ𝜈)
1

𝑛⁄ = 𝐴(һ𝜈 −  𝐸𝑔) (1) 

where h is Planck’s constant, ν is the photon’s 

frequency, α is the absorption coefficient, Eg is the 

bandgap, and A is the slope of the Tauc plot in the 

linear region. 

The SnO2 and Zr-MOF are direct bandgap 

semiconductors with n equal to 1/2 (Ganose and 

Scanlon, 2016; Hendrickx et al., 2018). The Eg values 

for all samples are shown in Fig. 5. The bandgap 

values are 2.89, 3.75, 2.27 and 2.12 eV for SnO2, Zr-

MOF, SMOF25 and SMOF50 samples, respectively. It 

can be seen that the bandgap is reduced with increasing 

in Zr-MOF concentration coupled to SnO2. This 

behavior can be explained by factors like particle size, 

optical properties and surface morphology, which 

influence the penetration of light photons (da Trindade 

et al., 2021). 
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Figure 5. Tauc plot from UV-Vis analysis of SnO2 (a), 

Zr-MOF (b), SMOF25 (c) and SMOF50 (d) samples. 

 

The J-V curves of SnO2, SMOF25 and 

SMOF50 photoanodes were analyzed in the potential 

range of 0–1.3 V at 20 mV s–1 in an I3
–/I– solution, 

Fig. 6. Current densities at 1.0 V in the presence of 

light are 2.77, 4.5 and 2.23 mA cm–2 for SnO2, 

SMOF25 and SMOF 50, respectively. The results show 

that the coupling of 25 wt% Zr-MOF with SnO2 

improved the charge transfer characteristics under light 

irradiated compared to the pure SnO2 and SMOF50 

samples. The SMOF50 sample presented a current 

density lower than the other samples, indicating that 

50 wt% Zr-MOF can reduce the active sites and delay 

the diffusion process for the electrolyte. This result 

demonstrates that the coupling of 25 wt% Zr-MOF 

with SnO2 is promising for the development of 

photoanodes for DSSCs considering that the values of 

short-circuit density (Jsc), found in the literature, for 

the pure TiO2 can range from 2.51 to 12.9 mA cm–2 

(Concina and Vomiero, 2014; Khannam et al., 2016). 

In the present work, the DSSC device was not 

assembled, we only tested the photoanode in I3
–/I– 

solution and without sensitized it by immersing in a 

dye solution. Therefore, by the obtained results, it is 

expected that when tested in the DSSC it will reach 

values similar or superior to cells with TiO2. 

 

 
Figure 6. J-V curves of the SnO2, Zr-MOF, SMOF25 

and SMOF50 samples at 20 mV s–1. 

 

The valence band (EVB) and conduction band (ECB) 

potentials can be calculated by the Mulliken method, 

Eqs. 2 and 3, respectively (Kandasamy et al., 2018): 

 

𝐸𝑉𝐵 =  χ −  𝐸𝑒 + 0.5𝐸𝑔 (2) 

𝐸𝐶𝐵 =  𝐸𝑉𝐵 − 𝐸𝑔 (3) 

where χ is the electronegativity of the semiconductor 

and Ee is the energy of the free electrons on the 

hydrogen scale (4.5 eV) and Eg is the bandgap energy 

of the material. 
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The SnO2 electronegativity is 6.25 eV and the ECB 

of Zr-MOF is –0.09 eV (vs. NHE); so, we can propose 

an energy band diagram for Zr-MOF coupling with 

SnO2, Fig. 7 (Abdelkader et al., 2015; Wang et al., 

2016). In the proposed energy band diagram when the 

SnO2/Zr-MOF sample is exposed to visible light, the 

photogenerated electrons (e–) in the Zr-MOF 

conduction band (CB) migrated to SnO2, while the 

holes (h+) remained in the Zr-MOF valence band (VB), 

resulting in the separation of the charge carriers. 

 

 
Figure 7. Proposed energy band diagram of the 

SnO2/Zr-MOF composite. 

 

4. Conclusions 
 

The Zr-MOF coupling in the SnO2 was prepared by 

mechanical mixture followed by heat treatment. The 

effect of the coupling has been investigated using 

structural, optical and photoelectrochemical analysis. 

The XRD and the FTIR reveals the incorporation of 

Zr-MOF into the SnO2 lattice. The FE-SEM 

characterization shows an increase in the tendency to 

form clusters with an increase in the Zr-MOF 

concentration. The J-V data show that the coupling of 

25 wt% Zr-MOF with SnO2 improved 1.6 times the 

charge transfer characteristics under light irradiated 

compared to the pure SnO2 and 2 times when compared 

to the SMOF50 sample. This result demonstrates that 

the coupling of 25 wt% Zr-MOF with SnO2 is 

promising for the development of photoanodes for 

DSSCs. 
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ABSTRACT: Due to the potential of heterogeneous photocatalysis 

for wastewater treatment, the researches concerning the improvement 

materials modifications for its photocatalytic activity have been 

widely increased. One of the most employed methods is the metal 

doping into semiconductors. Herewith, we demonstrated the 

influence of Cu doping into TiO2 in its photocatalytic properties. The 

powder samples with 0.0 to 0.7% mol were obtained by the Pechini 

method and characterized by XRD, micro-Raman spectroscopy, FE-

SEM, and photoluminescence spectroscopy. The Cu insertion into 

TiO2 structure induced the stabilization of anatase phase, increasing 

its content in the samples in relation to the bare TiO2. The PL results 

indicated that a decrease in the PL emission intensity and a shift of 

the emission band to the blue region. The photocatalytic activity for 

rhodamine B degradation under UV light irradiation indicated that the 

Cu-doping into TiO2 led to an enhancement of the photocatalytic 

activity compared to the bare one. 
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1. Introduction 
 

Due to increasing of industrial disposal and domestic 

effluents on recent years, such as wastewater, it has 

become necessary an effective treatment alternative to 

improve the environment quality. Among several 

methods, heterogeneous photocatalysis has been studied 

as an alternative to such problem due to its potential 

degradation of organic compounds, allowing water and 

air purification (Fujishima et al., 2000; Galindo et al., 

2000; Gaya and Abdullah, 2008; Qourzal et al., 2005; 

Silva et al., 2020). Therefore, the search for materials 

with high photocatalytic activity and potential to solar 

applications has been the main target of researches. 

The titanium dioxide (TiO2) is odorless, has high acid 

resistance and act as a UV absorbent. The most 

important functions are as a widely used pigment, solar 

protection and photocatalyst for organic compounds. 

Titanium dioxide also has been used as a bleaching and 

opacifying agent in porcelain enamels, giving them 

brightness, hardness, and acid resistance. TiO2 is one of 

the most widely investigated for photocatalytic 

applications due to its high oxidizing ability for organic 

pollutants, low cost, photostability, nontoxicity and 

chemical stability (Dashora et al., 2014; Nakata and 

Fujishima, 2012; S. Wang et al., 2014). Numerous 

studies were published on the photocatalytic TiO2 

applications for the decomposition of organic 

compounds due to the ability of TiO2 to oxidize organic 

and inorganic substances in water and air through redox 

processes (S. Wang et al., 2014), TiO2 only absorbs 

ultraviolet (UV) light of broad solar spectrum due to its 

large bandgap energy (λ < 388 nm), which was 

comprised of only 4% of the entire solar spectrum 

(Dashora et al., 2014; H. Wang et al., 2015). 

Furthermore, the high recombination rate of 

electron/hole pair (e–/h+) within the semiconductor is the 

main problem for the photocatalytic performance of the 

semiconductor, since it disables the photoexcited 

electron and the hole for redox reactions (Rashad et al., 

2014; Li Zhang et al., 2014). 

In order to improve the photocatalytic performance 

of TiO2, modifications in its structure have been 

investigated, such as doping with metals ions (Li et al., 

2016; Sanchez-Dominguez et al., 2015; Q. Wang et al., 

2017; Xiao et al., 2016). The substitution of a Ti4+ by 

another transition metal ion promotes changes in the 

coordination parameters, thus altering the electronic and 

optical properties, resulting in attractive characteristics 

for photocatalytic applications (Chen et al., 2018a; 

Vargas Hernández et al., 2017). Several advantages 

concerning doping on TiO2 have been reported, such as 

increase of specific surface area, light absorption 

capacity, and charge transfer rate on particle surface, 

and band gap energy reduction (Carp et al., 2004; G. Liu 

et al., 2010). The Cu doping on TiO2 has shown 

improvement and desirable results for antibacterial 

applications (Lan Zhang et al., 2016) and for high-rate 

capability for lithium-ion batteries (Y. Zhang et al., 

2016), possibly making it an attractive dopant metal for 

photocatalytic applications. 

In this work, we report the influence of Cu-doped on 

TiO2 powders prepared by the Pechini method and its 

effects on structural and photocatalytic properties for 

degradation of rhodamine B dye (RhB) under UV light 

irradiation. These obtained powders were characterized 

using XRD, MR spectroscopy, FE-SEM, and PL 

spectroscopy. 

 

2. Experimental 
 

2.1 Synthesis 
 

All chemical reagents were of analytical grade and 

used without further treatment. The powders were 

obtained by the Pechini method, which were used 

titanium isopropoxide (purity 95%, Alfa Aesar), citric 

acid (purity 99.5%, Synth) and ethylene glycol (purity 

99%, Synth) in a ratio of 1:4:16 moles, respectively. 

Ethylene glycol was heated to 70 °C and then, titanium 

isopropoxide was added and stirred for 20 min. Citric 

acid was added to the mixture and this was stirred for 

2 h at 90 °C. The polymeric solution was standardized 

by gravimetry method in order to define content of TiO2 

generated per gram of solution. For the Cu-doped TiO2 

samples, Cu(NO3)2.3H2O was added to the polymeric 

solution in stoichiometric contents to obtain 0.3, 0.5 and 

0.7 at.% of Cu related to Ti, which the samples were 

denominated as CTO-0, CTO-0.3, CTO-0.5, and CTO-

0.7, respectively. The polymeric solutions were 

annealed at 380 °C for 4 h to form the root solid, and 

then 400 °C for 10 h to eliminate organic compounds. 

All concentrations of Cu-doped and bare TiO2 samples 

were annealed 600 °C for 4 h. 

 

2.2 Characterizations 

 

The morphological, structural and optical properties 

of samples were characterized by field-emission 

scanning electron microscopy (FE-SEM, JEOL 7500F), 

X-ray diffraction (XRD, Rigaku-Rotalex Dmax/2500 

PC) with Cu Kα radiation, micro-Raman spectroscopy 

(MR, Horiba Jobin Yvon LabRAM iHR550) with a laser 

wavelength of 514 nm. The optical spectroscopy in UV-

Vis on diffuse reflectance mode was performed in a 
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Perkin Elmer spectrophotometer (Lambda 1050 

UV/Vis/NIR). The photoluminescence spectroscopy 

(PL) was performed at room temperature under air 

atmosphere using a Monospec 27 monochromator 

(Thermal Jarrel Ash, USA) coupled to an R955 

photomultiplier (Hamamatsu Photonics, Japan). A 

krypton ion laser (Coherent, Innova 200) with 

wavelength of 350 nm, with maximum output power 

maintained at 500 mW and maximum power of 14 mW 

on the sample due to the passage through an optical 

chopper. The surface area was measured using 

Brunauer-Emmett-Teller (BET) methods and 

Micromeritics ASAP 2010 equipment. 

 

2.3 Photocatalytic experiments 

 

The photocatalytic performance of all samples was 

carried out in a Philips Ouro reactor, which was 

fitted with a quartz tube and an inner UV germicide 

lamp (λ = 254 nm, 11 W, Osram, Puritec HNS 2G7). 

The reactor was 9.4 cm of inside diameter and 17.2 cm 

of height, the quartz tube was 4.1 cm of the inside 

diameter and 22 cm of height which was sustained by a 

support. The UV germicide lamp was inside the quartz 

tube and has dimensions of 1.2 × 2.6 × 19 cm. The 

experiments were conducted with 700 mL of rhodamine 

B dye (RhB) solutions (10–5 mol L–1), 70 mg of catalyst 

and under constant agitation and pumping air to 

saturation of O2 dissolved. At certain times, aliquots 

were withdrawal and centrifuged for absorbance 

measurements in a Perkin Elmer spectrophotometer 

(Lambda 1050 UV/Vis/NIR). 

 

3. Results and discussion 
 

Figure 1a shows the XRD patterns of Cu-doped and 

bare TiO2 samples obtained by the Pechini method. For 

all samples, the anatase and rutile phases of TiO2 were 

observed, according to the Inorganic Crystal Structure 

Database (ICSD) code 9852 and code 9161, 

respectively. The presence of rutile phase is due to its 

thermodynamic stability in synthesis temperature from 

600 °C (Hu et al., 2003; Zhu et al., 2015). No peaks 

related to any Cu-related phase were observed, 

indicating the incorporation of Cu2+ into the TiO2 lattice 

as dopant. 

 

 

 
Figure 1. XRD patterns (a) and phase content (b) of 

CTO-0, CTO-0.3, CTO-0.5, and CTO-0.7 samples. 

 

In order to quantify the proportions of anatase and 

rutile phases in the prepared samples, the Spurr and 

Myers (1957) method was employed, according to the 

Eq. 1, in which, fa is the anatase percentage in sample, 

IR and IA are the integrated intensity of rutile (110) and 

anatase (101) peaks. 

fa = 
1

(1 + 1.265 
IR
IA
)
 (1) 

The anatase and rutile crystallite sizes of all prepared 

samples were calculated according to the Scherrer’s 

Eq. 2 (Alexander and Klug, 1950). 

D = 
k λ

β cos θ
 (2) 

The k is a constant related to shape factor (about 0.9), 

λ is the X-ray wavelength of Cu Kα radiation 
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(0.15406 nm), β is the full width at half maximum 

(FWHM) of the diffraction peak, and θ is the diffraction 

angle. The values of β and θ used were related to the 

predominant phase on sample, being the (101) and (110) 

crystal planes for anatase and rutile phases, respectively. 

The calculated anatase crystallite sizes were 37.0, 28.8, 

23.7, and 27.6 nm for CTO-0, CTO-0.3, CTO-0.5, and 

CTO-0.7 samples, respectively. For rutile crystallite 

sizes, the obtained values were 42.3, 35.2, 25.3, and 33.7 

nm for CTO-0, CTO-0.3, CTO-0.5, and CTO-0.7 

samples, respectively. 

It can be observed that the Cu insertion on the TiO2 

lattice promoted an anatase phase stabilization 

compared to the bare one, as can be seen by the higher 

weight fractions (Fig. 1b). The anatase to rutile phase 

transformation in TiO2 is strongly dependent on the 

synthesis temperature and also on the intrinsic 

physicochemical properties and concentration of 

impurities on lattice (Choi et al., 2010; Shannon and 

Pask, 1965). As already reported, Cu2+ ions are most 

probably located in interstitial positions into TiO2 lattice 

on anatase phase and primarily on grain surface due to 

its relatively large difference in ionic radius related to 

Ti4+ ions, i.e., 73 and 60.5 pm for Cu2+ and Ti4+ in 

octahedral sites. Besides that, the lower density and 

higher volume of unit cell of anatase compared to rutile 

phase also contribute for the Cu2+ interstitial occupation 

(Choi et al., 2010; Gupta and Tripathi, 2011). The 

interstitial Cu2+ into TiO2 lattice generates Ti–O–Cu 

bonds that led to an increase in strain energy necessary 

to anatase to rutile phase transformation, resulting in an 

inhibition of the grain growth (Choi et al., 2010; Hanaor 

and Sorrell, 2011; Qi et al., 2011; Shannon and Pask, 

1965), as can be observed in the reduction of average 

crystallite size of anatase with increasing doping 

concentration. This strain energy needs to be overcome 

to the rearrangement of [TiO6] clusters, which have 

different spatial organizations in both phases. Once Cu2+ 

ions are located at interstitials positions, the energy 

required for rearrangement has increased due to its 

interactions with [TiO6] clusters. 

Figure 2a shows the micro-Raman spectra for the Cu-

doped and bare TiO2 samples. Both anatase and rutile 

phase of TiO2 exhibits characteristics Raman shift 

bands, being six vibrational modes Raman active for 

anatase and four for rutile phase. The characteristics 

Raman bands of anatase phase are approximately 

located at 144 cm–1 (Eg), 197 cm–1 (Eg), 399 cm–1 (B1g), 

513–519 cm–1 (overlap in Raman shifts values by two 

vibrational modes with symmetries A1g e B1g), and 639 

cm–1 (Eg). For rutile phase, the Raman shifts bands are 

located at approximately 143 cm–1 (B1g), 447 cm–1 (Eg), 

612 cm–1 (A1g), and 826 cm–1 (B2g) (Naumenko et al., 

2012; Ohsaka et al., 1978; Ricci et al., 2013; Sahoo et 

al., 2009). Another band nearly 238 cm–1 for rutile phase 

is characteristic of a second order scattering due to 

coupling of two optical phonons (Ohsaka et al., 1978; 

Ricci et al., 2013; Swamy and Muddle, 2006). 

 

 

 
Figure 2. Raman spectra (a) and Eg Raman bands (b) of 

CTO-0, CTO-0.3, CTO-0.5, and CTO-0.7 samples. 

 

It can be observed that the increase in Cu 

concentrations into TiO2 induced a decrease in the 

intensities of Raman bands compared to the bare one. 

The structural Ti–O–Cu linkage formed by the 

interstitial Cu results in a hindrance of the [TiO6] 

clusters, reducing its freedom degree for the vibrational 

modes, hence decreasing the intensity of the Raman 

bands. Figure 1b shows the Eg Raman band position for 

the anatase phase for all prepared samples. It can be seen 

that the insertion of Cu into TiO2 lattice induced a shift 

to higher frequencies, thus corroborating with the 
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presence of Ti–O–Cu linkage that results in an increase 

in the strain energy. 

Figure 2 shows the FE-SEM images of the Cu-doped 

and bare TiO2 samples. It can be observed that all 

samples are composed of agglomerates of nanoparticles, 

which is characteristic of the Pechini method (Chen et 

al., 2018b; Neris et al., 2018). Furthermore, the 

agglomeration of these nanoparticles also arises from 

the annealing procedure, thus inducing their 

coalescence. 

Photoluminescence spectroscopy emission 

measurements were performed to understand the effect 

of Cu insertion into TiO2 structure in its optical 

behavior. Figure 3a shows the PL spectra of bare and 

Cu-doped TiO2 samples. As can be seen, all spectra 

indicated the presence of two major emission bands, one 

located at 400–700 nm and the other centered at 

approximately 800 nm. The first one is characteristic of 

anatase phase emission and the second is characteristic 

of rutile phase emission, corroborating the XRD and 

Raman results (Jin et al., 2015; Nasr et al., 2015). The 

PL spectra for all prepared samples indicate a broadband 

profile, which is assigned to multiphonon processes. 

These processes arise from the presence of a high 

density of energy levels within the band gap, in which 

the electron momentum relaxation and hence photon 

emission occur in several pathways (Cruz et al., 2020; 

Tello et al., 2020). It can be seen that all Cu-doped 

samples presented a lower emission intensity compared 

to the bare one. This indicates a higher density of 

intermediate energy levels within the band gap for Cu-

doped samples, which results in a lower recombination 

rate of the electron-hole pairs. 

 

 

 

 

 
Figure 3. FE-SEM images of CTO-0 (a), CTO-0.3 (b), 

CTO-0.5 (c), and CTO-0.7 (d) samples. 

 

In order to investigate the contribution of defects for 

PL emissions in bare and Cu-doped TiO2 samples, 

deconvolution of emission bands was performed using 

the PeakFit v.4 software. It is known that emissions in 

different color regions are due to different type of 

defects in the structure that contribute to the electronic 
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transitions. The blue emissions have been associated 

with the structural distortions in the composing clusters 

of the lattice, whereas the green and yellow emissions 

have been associated with the oxygen vacancies (Longo 

et al., 2008; Silva Junior et al., 2015). As can be seen, 

the insertion of Cu into the TiO2 lattice promoted a shift 

of the band emission for the blue region, as observed by 

the maximum emission wavelength and its percentage 

contribution in the Fig. 3b–e. 

For clearer evidence, the contribution percentages of 

blue emission in function of the Cu-doping content are 

shown in Fig. 4f. It can be seen that the blue emission 

percentage directly increases with increasing Cu-doping 

content. Once the Cu2+ ions are occupying 

interstitial positions in the anatase phase of TiO2, 

resulting in a Ti–O–Cu linkage, it is expected higher 

structural distortions in the [TiO6] clusters compared to 

the bare one due to the atomic rearrangement. These 

structural distortions were confirmed by a higher 

contribution percentage of blue emission and 

corroborate the XRD and Raman results. Furthermore, 

the structural distortions in the [TiO6] clusters caused by 

the Cu insertion into the TiO2 lattice generate 

intermediate energy levels within the band gap, which 

decrease the recombination rate of electron-hole pairs 

and hence the PL emission intensity, as observed in 

Fig. 4a. 

The photocatalytic activity of bare and Cu-doped 

TiO2 samples was tested for RhB dye degradation under 

UV light irradiation. Figure 5a shows the RhB 

degradation percentage against the irradiation time for 

all prepared samples and the controlling test 

(photolysis). 
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Figure 4. Photoluminescence spectroscopy spectra of 

all prepared samples (a), deconvolution of emission 

band of CTO-0 (b), CTO-0.3 (c), CTO-0.5 (d), and 

CTO-0.7 (e) samples, and blue emission percentage of 

all prepared samples (f). 

 

It was observed that all Cu-doped samples present a 

higher photocatalytic activity compared to the bare one. 

Further, the increase in the Cu-doping content led to an 

increase in the RhB degradation percentage in 90 min of 

reaction. However, the CTO-0.5 and CTO-0.7 samples 

presented similar photocatalytic activity, indicating a 

saturation of the Cu-content for the improvement of 

photocatalytic activity of the TiO2. According to the 

Langmuir-Hinshelwood plot (Fig. 4b), the 

photocatalytic activity of all prepared samples presents 

a pseudo-first order kinetics (B. Liu et al., 2014). The 

rate constants for those samples are depicted inset the 

Fig. 4b. 

As previously mentioned, the Cu insertion into the 

TiO2 lattice leads to the structural distortions in the 

[TiO6] clusters, which generate a higher density of 

intermediate energy levels within the band gap. These 

energy levels act as traps for the electronic transitions, 

thus decreasing the recombination rate of electron-hole 

pairs, as observed by PL analysis. Herewith, the 

decrease in the recombination rate leads to an increase 

in the lifetime of electron-hole pairs. Once these pairs 

have a higher lifetime, their availability to perform the 

redox reactions with the reaction medium are also 

increased. Therefore, the Cu insertion into the TiO2 

lattice caused structural distortions in the [TiO6] clusters 

that act as trap for electronic transitions, thus increasing 

the availability of electrons to promote the reduction 

reactions and holes to promote the oxidation reactions. 

These redox reactions rule the RhB degradation 

mechanism either by the generation of radical species 

that can degrade the RhB molecules as also by the direct 

degradation of RhB molecules adsorbed on the TiO2 

particle surface. 

 

 

 
Figure 5. Relative absorbance of RhB dye solution 

against photocatalytic reaction time (a) and pseudo first-

order kinetics plot (b) for CTO-0, CTO-0.3, CTO-0.5, 

and CTO-0.7 samples. 
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The prepared CTO-0 sample has a composition very 

close to Degussa P25 (85% wt rutile and 15% wt 

anatase), one of the world’s most used photocatalysts, 

but the photocatalytic active of this and of the all the 

CTOs obtained are small from the P25 activity. This was 

attributed to surface area difference since the P25 

surface are 83 m2 g–1 and the obtained is a maximum 

of 15 m2 g–1) for CTO 0.5. 

 

4. Conclusions 
 

The Cu-doping into TiO2 as powders samples were 

successfully obtained by the Pechini method. The 

insertion on Cu2+ into the TiO2 structure promoted the 

anatase phase stabilization, increasing its content on the 

samples in relation to the pure TiO2. This stabilization 

has been assigned to the interstitial occupation of Cu2+ 

in the anatase phase of TiO2, thus increasing the strain 

energy required to the structural rearrangement for the 

transformation in rutile phase. The shift to higher 

vibrational frequencies in Raman analysis corroborated 

the occupation of Cu2+ in interstitial positions into TiO2 

structure. PL results indicated that the Cu-doping in 

TiO2 induced structural distortions in [TiO6] clusters, 

which resulted in shift of PL emission band to blue 

region and a decrease in the PL emission intensity. The 

photocatalytic performance of TiO2 samples under UV 

light irradiation were enhanced by the Cu-doping, which 

has been related to the formation of intermediate energy 

levels within band gap. These levels can act as electron 

trap, thus decreasing the recombination rate of electron-

hole pairs and hence increasing their availability to 

perform the redox reactions with the reaction medium. 

Therefore, the Cu-doping into TiO2 allowed structural 

and photocatalytic advantages in relation to the pure 

sample. 
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