Volume 39

Artigo/Article

ECLÉTICA química

USO DA VOLTAMETRIA CÍCLICA E DA ESPECTROSCOPIA DE IMPEDÂNCIA ELETROQUÍMICA NA DETERMINAÇÃO DA ÁREA SUPERFICIAL ATIVA DE ELETRODOS MODIFICADOS À BASE DE CARBONO

L. L. de Souza e C. A. L. G. de O. Forbicini Instituto de Pesquisas Energética e Nucleares - IPEN-CNEN/SP Centro de Química e Meio Ambiente – CQMA Av. Prof. Lineu Prestes, 2242 – Cidade Universitária – CEP 05508-000 São Paulo-SP, Brasil

Resumo: Eletrodos à base de carbono, como os eletrodos de troca iônica, entre outros, têm aplicação principalmente no tratamento de efluentes industriais e rejeitos radioativos. Carbono é também amplamente utilizado em células a combustível como substrato para os eletrocatalisadores, por possuir elevada área superficial, que supera a sua área geométrica. O conhecimento desta superfície ativa total é importante na determinação das condições de operação de uma célula eletroquímica no que diz respeito às correntes a serem aplicadas (densidade de corrente). No presente estudo foram utilizadas duas técnicas eletroquímicas na determinação da área superficial ativa de eletrodos de carbono vítreo e poroso e eletrodos de troca iônica: espectroscopia de impedância eletroquímica (EIE) e voltametria cíclica (VC). Os experimentos foram realizados com soluções de KNO₃ 0,1 mol.L⁻¹ em célula eletroquímica de três eletrodos: eletrodo de trabalho à base de carbono, eletrodo auxiliar de platina e eletrodo de referência de Ag/AgCl. Os eletrodos de carbono vítreo e de carbono poroso utilizados possuíam uma área geométrica de $3,14 \ge 10^{-2} \text{ cm}^2 \text{ e } 2,83 \ge 10^{-1} \text{ cm}^2$, respectivamente. O eletrodo de troca iônica foi preparado misturando-se grafite, carbono, resina de troca iônica e um aglutinante, sendo esta mistura aplicada em três camadas sobre feltro de carbono, utilizando-se nos experimentos uma área geométrica de 1,0 cm². Por EIE determinou-se diretamente a capacitância dos materiais dos eletrodos (Cd) utilizando-se os diagramas de Bode. Por VC, variando a velocidade de varredura de 0,2 a 2 mV.s⁻¹, determinou-se a capacitância C_dS (S=área superficial ativa) na região da dupla camada elétrica (DCE) para cada um dos materiais, Por EIE, foram determinados os valores de C_d de 3,0 x 10⁻⁵ μ F.cm⁻² e de 11 x 10³ μ F.cm⁻² para os eletrodos de carbono poroso e de troca iônica, respectivamente, o que possibilitou a determinação das áreas superficiais ativas de 3,73 x 10⁶ cm² e 4,72 cm². Portanto, o uso combinado das técnicas de EIE e VC mostra-se promissor para o cálculo das áreas superficiais ativas de eletrodos à base de carbono.

Palavras-chave: eletrodos de carbono, área superficial, voltametria cíclica, espectroscopia de impedância eletroquímica

Abstract: Carbon-based electrodes as well the ion exchange electrodes among others have been applied mainly in the treatment of industrial effluents and radioactive wastes.

Eclética Química, 39, 49-67, 2014.

Carbon is also used in fuel cells as substrate for the electrocatalysts, having high surface area which surpasses its geometric area. The knowledge of the total active area is important for the determination of operating conditions of an electrochemical cell with respect to the currents to be applied (current density). In this study it was used two techniques to determine the electrochemical active surface area of glassy carbon, electrodes and ion exchange electrodes: cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The experiments were carried out with 0.1mol.L⁻¹ KNO₃ solutions in a three-electrode electrochemical cell: carbon-based working electrode, platinum auxiliary electrode and Ag/AgCl reference electrode. The glassy carbon and porous carbon electrodes with geometric areas of 3.14 x 10⁻² and 2.83 x10⁻¹cm2, respectively, were used. The ion exchange electrode was prepared by mixing graphite, carbon, ion exchange resin and a binder, and this mixture was applied in three layers on carbon felt, using a geometric area of 1.0 cm^2 during the experiments. The capacitance (Cd) of the materials was determined by EIS using Bode diagrams. The value of 172 µF.cm-2found for the glassy carbon is consistent with the literature data (~200 µF.cm-2). By VC, varying the scan rate from 0.2 to 2 mV.s⁻¹, the capacitance CdS (S = active surface area) in the region of the electric double layer (EDL) of each material was determined. By EIS, the values of Cd, 3.0x 10-5µF.cm-2and 11 x 103µF.cm-2, were found for the porous carbon and ion exchange electrodes, respectively, which allowed the determination of active surface areas as 3.73 x 106cm2and 4.72 cm2. To sum up, the combined use of EIS and CV techniques is a valuable tool for the calculation of active surface areas of carbon-based electrodes.

Keywords: carbon electrodes, surface area, cyclic voltammetry, electrochemical impedance spectroscopy.

Introdução

Métodos eletroquímicos para avaliação de superfície de eletrodos podem ser utilizados na determinação da superfície eletroquimicamente ativa de eletrodos modificados.

Eletrodos modificados à base de carbono estão sendo desenvolvidos para serem utilizados como matrizes em catalisadores sólidos, com o objetivo de separar contaminantes de rejeitos industriais e radioativos, além da aplicação como eletrocatalisadores em células a combustível (CaC) [1,2,3]. Como a preparação destes eletrodos produz um material rugoso de superfície irregular, a determinação da área superficial, que é muito maior que o cálculo de sua área geométrica, torna-se necessária [4,5,6,7,8].

A denominação de eletrodos quimicamente modificados (EQMs) foi sugerida por *Murray et al.* na década de 70 para definir eletrodos com espécies quimicamente ativas imobilizadas na superfície desses dispositivos ^[9,10]. Estas espécies permitem estabelecer e controlar a natureza físico-química da interface eletrodo/solução e conferem à superfície eletródica propriedades especificas, tais como, eletrocatálise ^[11] e pré-concentração empregada na determinação de metais.

No inicio dos anos 80 eletrodos de pasta de carbono modificados (EPCMs) foram desenvolvidos com dimetilglioxima para a determinação de íons Ni(II) [12]. O uso de um reagente seletivo clássico proporcionou um aumento significativo na seletividade do eletrodo.

Os materiais comumente empregados como agentes modificadores na de pré-concentração metais preparação de EPCM para a são: sílicas organofuncionalizadas, compostos orgânicos por polímeros do estireno e divinilbenzeno, funcionalizadas com grupos trocadores iônicos, sais quartenários de amônia, para resinas aniônicas, e grupamentos sulfônicos $(-SO_3^-)$ e carboxílicos $(-COO^-)$, para as resinas catiônicas [9].

A vantagem de eletrodos de troca iônica que possuem resinas em sua composição é a produção de eletrodos tanto catiônicos quanto aniônicos, igualmente efetivos na dessalinização da solução – remoção/recuperação de metais em soluções aquosas, descontaminação de efluentes produzidos em Reatores Nucleares de Potência de Água Pressurizada (PWR), na separação de radioisótopos do tanque de estocagem de rejeitos radioativos, na remoção seletiva e recuperação de metais preciosos das operações de refinamento de metais, na remoção da prata das águas de lavagem provenientes da revelação fotográfica, na remoção de metais tóxicos, como o arsênio, presentes na água potável, etc [4,13,14,15,16].

Como a preparação destes eletrodos produz um material rugoso de superfície irregular, a determinação da área superficial, que é muito maior que o cálculo de sua área geométrica, torna-se necessária [17,18,19,20].

O método usualmente empregado na determinação da área superficial é a análise das isotermas de adsorção/dessorção usando os modelos de BET (Brunauer, Emmett e Teller) ou BJH (Barrett, Joyner e Halenda) [21,22,23,24,25]. Os porosímetros por intrusão de mercúrio são normalmente usados na determinação das propriedades estruturais dos poros dos materiais [26,27]. No entanto, estes dois métodos determinam a área superficial total e não a área que realmente contribui na corrente. O uso da normalização por carga de CO adsorvido para a caracterização *in situ* do catalisador de CaC é outra técnica empregada na determinação da área eletroquimicamente ativa de eletrodos mas, neste caso isto refere-se à área superficial de partículas de metal (no caso, a Pt), as quais estão ao mesmo tempo em contato com o eletrólito (neste caso Nafion®) e com o coletor de corrente (usualmente tecido de carbono ou papel de carbono) [28,29,30,31].

Devido às propriedades de condução eletrônica do carbono, o uso de métodos eletroquímicos, que empregam a Voltametria Cíclica (VC) e a Espectroscopia de Impedância Eletroquímica (EIE), possibilita a determinação da área superficial deste material, por meio do conhecimento de suas correntes capacitivas. Diferentemente dos métodos anteriormente citados, nos quais os materiais estão em contato com um gás, nestas duas técnicas eletroquímicas os materiais estão em contato com uma solução eletrolítica [1,31,32,33].

Mediante o exposto, no presente trabalho, a união das duas técnicas, VC e EIE permitirão que os eletrodos à base de carbono, como os eletrodos de troca iônica e outros materiais com superfície porosa irregular, tenham suas áreas superficiais ativas determinadas de maneira mais rápida e simples. No presente trabalho foram determinadas as área superficiais ativas do carbono poroso (CP) e de eletrodos de troca iônica (ETI). O eletrodo de carbono vítreo (CV) foi utilizado para validar a metodologia.

Experimental

Nos experimentos de VC e de EIE foram utilizados três eletrodos: eletrodo de trabalho (à base de carbono), eletrodo de referência de (Ag/AgCl), e contra-eletrodo de placa de platina. Os eletrodos foram colocados em uma célula de vidro com cerca de 150 mL de solução de KNO₃ 0,1 mol.L⁻¹.

Preparação dos eletrodos de troca iônica (ETI)

Para a preparação dos ETI diluiu-se em um béquer o aglutinante Kraton® em tolueno na proporção de 1:10. Em outro béquer acrescentou-se a resina Amberlite CG-50, o carvão Norit A e o grafite, em porcentagens variadas, conforme a TAB.1, agitando-se bem a mistura até que ficasse homogênea. Em seguida, juntaram-se as duas misturas, formando um líquido escuro e viscoso. Este líquido foi aplicado em camadas sobre o feltro de carbono com um pincel. Foram aplicadas três camadas com intervalo de uma hora entre elas, para secagem a temperatura ambiente. Repetiu-se o procedimento do outro lado do feltro de carbono. Após a pintura, o eletrodo foi cortado no tamanho padronizado de 1cm² (área geométrica). Para isso suas laterais e parte posterior foram cobertas com Durepox® para que não houvesse contribuição no valor da corrente por estas regiões [4].

Eletrodo	Peso (%)
ETI-1	R-35
	C-25
	G-15
	A-25
ETI-3	R-30
	C-25
	G-15
	A-30
ETI-4	R-30
	C-30
	G-15
	A-20

Tabela 1. Composição dos Eletrodos de Troca Iônica (ETI) utilizados nos experimentos.

R = resina, C = carvão, G = grafite, A = aglutinante.

Metodologia

O método baseia-se na determinação da capacitância na região da dupla camada elétrica (DCE), por meio da medida da corrente capacitiva [1,34-43]. Na determinação da capacitância do eletrodo de CV utilizaram-se os dois métodos, condutância e impedância, para fins comparativos de resultados e admitiu-se que a área superficial do eletrodo correspondia à sua área geométrica [44-48].

Determina-se a região da DCE por VC considerando o intervalo entre os picos de redução e oxidação da solução eletrolítica. Assume-se que:

 $C = C_d S$

onde C (F) é o capacitor (capacitância aparente), C_d (F.cm⁻²) é a capacitância da DCE e S (cm²) é a área superficial do eletrodo. Assim:

onde i (A) é a corrente capacitiva, υ (V.s⁻¹) é a velocidade de varredura, E_i (V) é o potencial na região da DCE e R_s (Ω) a resistência.

A corrente pode de esta forma ser dividida em dois termos. O primeiro, i_s , que corresponde à parte estacionária ($C_d S v$) e a segunda, i_t , à parte transitória, que decresce exponencialmente com o tempo.

Para pequenos valores da velocidade de varredura v, pode-se considerar [1]:

$$i_s = C_d S v$$
 Eq.2

A determinação da capacitância da DCE do carbono vítreo, com superfície devidamente polida de modo a assumir que a sua área geométrica é igual a sua área superficial, pode ser assim calculada. Os valores das correntes capacitivas do carbono vítreo de área superficial conhecida são colocadas em função da velocidade de varredura. Ao fazer a regressão linear destes pontos é possível determinar o coeficiente angular que fornece o valor de C_dS, segundo a Eq.2. Como a área geométrica do carbono vítreo é conhecida, obtém-se assim o valor de C_d [1,34,35,36,37].

Pelo método de impedância, dentre as diversas representações gráficas que este método possibilita, a que foi utilizada no cálculo da capacitância foi a de Bode, que consiste na representação de log |Z| versus log ω [44,47,48].

O módulo da impedância, |Z| é obtido através da seguinte relação:

$$\left|Z\right| = \sqrt{Z_r^2 + Z_i^2}$$
 Eq.3

sendo, Z_r e Z_i os valores da impedância real e imaginária, respectivamente. Esses valores foram obtidos numa faixa de freqüência de 6 a 5000 Hz. Para freqüências intermediárias |Z| é inversamente proporcional a freqüência ω , e, assim, obtém-se, na região de transição entre os dois patamares horizontais, uma reta de declive s = -1. O valor de C_d pode ser determinado por meio da extrapolação dessa reta para $\omega = 1$ (ou $log \omega = 0$), onde:

$$|Z| = \frac{1}{C_d}$$
Eq.4

Resultados e Discussão

Determinação da área superficial do eletrodo de Carbono Vítreo (CV) por condutância e impedância

Inicialmente fez-se as determinações de C_dS para o CV por VC. Na FIG.1 temse o voltamograma do carbono vítreo realizado em solução de KNO₃ 0,1 mol.L⁻¹ e velocidades de varredura de 0,2 a 2,0 mV.s⁻¹. Verificou-se que a DCE está entre, 0,5 a 1,0 V (vs Ag/AgCl). Esta região foi ampliada para melhor visualização dos valores da corrente utilizada no cálculo de C_dS . Este gráfico mostra também os pontos de evolução de H₂ a baixos potenciais e evolução de O₂ a altos potenciais (acima de 1,5 V (vs Ag/AgCl)).

Figura 1. Voltamograma cíclico do eletrodo de Carbono Vítreo, em solução de KNO₃ 0,1mol.L⁻¹, velocidade de varredura variando de 0,2 a 2,0 mV.s⁻¹, com ampliação da DCE.

Na FIG.2 é mostrado o gráfico da corrente capacitiva estacionária (i_s) em função da velocidade de varredura (ν) para os potenciais de 0,5, 0,6 e 0,7 V (vs Ag/AgCl). Após o tratamento estatístico dos dados, determinou-se o coeficiente angular da reta C_dS, segundo Eq.2.

Figura 2. Corrente estacionária versus a velocidade de varredura para os potenciais de 0,5, 0,6 e 0,7 V (vs Ag/AgCl) e a regressão linear segundo a Eq.2 para o carbono vítreo.

A TAB.2 mostra os valores obtidos para cada curva da FIG.2 e os seus coeficientes de determinação, R^2 . Os altos valores obtidos para R^2 (> 99%) indicam uma forte correlação positiva

Tabela 2. Valores de C_dS para o Carbono Vítreo e seus respectivos coeficientes de determinação.

Potencial (V)	CdS (F)	Coeficiente de Determinação, R ²
0,5	$1,23 \times 10^{-5}$	0,9997
0,6	$1,32 \times 10^{-5}$	0,9998
0,7	$1,40 \times 10^{-5}$	0,9987

Calculando-se a média de C_dS obtém-se 13,16×10⁻⁶ F. Utilizando o valor da área geométrica do eletrodo de CV $(3,14 \times 10^{-2} cm^2)$ obtém-se o valor da capacitância pelo método de condutância, ou seja,

$$\overline{C_d S} = 13,16\,\mu F$$

$$C_{d} = \frac{13,16 \times 10^{-6}}{3,14 \times 10^{-2}}$$
$$C_{d} = 419,2\,\mu F.cm^{-2}$$

Por meio da expressão de i_s (Eq.2), que relaciona a capacitância com a área do eletrodo, foi possível determinar a capacitância C_d, para cada um dos potenciais estudados e, finalmente, calcular o valor médio da capacitância.

Na FIG.3 são mostrados diagramas de Bode para o CV obtidos em solução eletrolítica de KNO₃ 0,1 mol.L⁻¹ para os potenciais de 0,5, 0,6 e 0,7 V (vs Ag/AgCl). A escolha desses potenciais é justificada devido a região da DCE estar restrita à esta faixa de potenciais, fato que pode ser verificado por meio dos voltamogramas (FIG.1).

Figura 3. Representação de Bode para o Carbono Vítreo nos potenciais de 0,5, 0,6 e 0,7 V (vs Ag/AgCl).

Na representação de Bode está expresso o valor absoluto da impedância, que como mostrado na Eq.4 é o inverso da capacitância. Repetindo estes cálculos para cada um dos potenciais estudados obtém-se o valor médio de $C_d^{[44]}$.

A TAB.3 mostra os valores do módulo da impedância e o valor da capacitância para os potenciais estudados.

Tabela 3. Valores do Módulo da Impedância e da capacitância para o carbon	o Vítreo
em diferentes potenciais da DCE.	

Potencial	$ \mathbf{Z} $	$C_d (\mu F.cm^-)$
(V)	(ohm)	²)
0,5	$152, 64 \times 10^3$	6,55
0,6	$195, 08 \times 10^3$	5,13

Eclética Química, 39, 49-67, 2014.

0,7	$221,26 \times 10^{3}$	4,52

A partir dos valores de C_d da TAB.3 obtêm-se $\overline{C_d}$, igual a 5,40 µF.cm⁻². Dividindo este valor pela área do eletrodo de carbono vítreo, temos que:

$$\overline{C_d} = \frac{5,40\,\mu F}{3,14 \times 10^{-2}} \approx 172\,\mu F.cm^{-2}$$

Comparando-se os valores de C_d obtidos de 172 μ F.cm⁻² e 420 μ F.cm⁻² pelos métodos de Impedância e de Condutância, respectivamente, verifica-se que a medida de C_d por Impedância foi aproximadamente três vezes menor do que o valor obtido pelo método voltamétrico e que esse valor se aproxima dos encontrados na literatura ^[1,49,50]. Desta forma, os valores de C_d dos demais eletrodos em estudo foram determinados pelo método de Impedância.

Determinação da área superficial dos Eletrodos de Troca Iônica (ETI) e de Carbono Poroso (CP) por condutância e impedância

Para a determinação da área superficial ativa dos eletrodos foram realizadas as seguintes etapas:

- a) Obtenção do voltamograma cíclico para determinação da região da DCE;
- b) Construção do gráfico da corrente capacitiva em função da velocidade de varredura, considerando a região linear;
- c) Regressão linear destes pontos para determinar o coeficiente angular, C_dS, segundo a Eq.2;
- d) Obtenção do valor médio, $\overline{C_d S}$;
- e) Determinação do valor médio da capacitância, C_d , na região da DCE por EIE, utilizando o diagrama de Bode,
- f) Determinação da área superficial ativa.

A TAB.4 mostra os valores de $\overline{C_d S}$ e de C_d que foram obtidos pelos métodos de VC e EIE, respectivamente, para os eletrodos estudados.

Método	Eletrodo	$\overline{C_d S}$ (μF)	C_d (μFcm^{-2})
	CV	13,16	419,2
	ETI-1	$52x10^{3}$	
VC	ETI-3	$38x10^{3}$	
	ETI-4	105×10^{3}	
	Carbono Poroso	109,1	
DIE	CV	5,40	172
EIE	ETI-1		$11x10^{3}$

Tabela 4. Valores da capacitância para os eletrodos estudados por VC e EIE.

ETI-3	$22x10^{3}$
ETI-4	$32x10^{3}$
Carbono Poroso	1,71

Pode-se verificar que o alto valor de C_d encontrado para o eletrodo de CV está relacionado com a superfície polida porosa do mesmo e esta em concordância com a literatura. Por outro lado, o baixo valor de C_d para o eletrodo de Carbono Poroso $(1,71 \mu F cm^{-2})$ pode ser explicado por meio das alterações na taxa de crescimento do tamanho dos grãos, sugerindo que o controle dessas propriedades torna-se relevante [1,49,50].

Os ETI-1, ETI-3 e ETI-4 mostraram ser bons capacitores eletroquímicos, com valores de C_d de 11x10³, 22x10³ e 32x10³ µF.cm⁻², respectivamente, indicando grande área superficial (alta porosidade) como demonstram as micrografias apresentadas a seguir.

As micrografias (Figuras 4-8) foram analisadas para cada um dos eletrodos confeccionados e mostraram que as condições de processamento utilizadas levaram à obtenção de um material não uniforme, com falhas e uma mistura não-homogênea dos componentes da formulação, diferentemente dos eletrodos de carbono vítreo e de carbono poroso.

Figura 4. Micrografias obtidas por Microscopia Eletrônica de Varredura (MEV) da superfície do ETI-1 com aumento de a) 100x, b) 1000x.

Figura 5. Micrografias obtidas por Microscopia Eletrônica de Varredura (MEV) da superfície do ETI-3 com aumento de a) 500x, b) 1000x.

Figura 6. Micrografias obtidas por Microscopia Eletrônica de Varredura (MEV) da superfície do ETI-4 com aumento de a) 1000x, b) 1000x.

Figura 7. Micrografias obtidas por Microscopia Eletrônica de Varredura (MEV) da superfície do Eletrodo de Carbono Poroso com aumento de: a) 500 x e c) 1000x.

Figura 8. Micrografias obtidas por Microscopia Eletrônica de Varredura (MEV) da superfície do eletrodo de Carbono Vítreo (ECV), a) 500x, b) 1000x.

A TAB.5 mostra os valores encontrados da área superficial ativa para cada eletrodo estudado.

I	1
Eletrodo	$S(cm^2)$
ETI-1	4,72
ETI-3	1,73

3,28

63,7

ETI-4

Carbono Poroso

Tabela 5. Valores de área superficial ativa para os eletrodos envoltos com Durepox
pelos métodos eletroquímicos.

Um espectro de impedância típico obtido na faixa de frequência de 10 Hz – 10 kHz para os eletrodos de carbono poroso, carbono vítreo, ETI-1, ETI-3 e ETI-4 a 25°C (Diagrama de Bode) é mostrado na FIG.9, que apresenta o logaritmo dos valores absolutos de Impedância, |Z|, e os valores absolutos do ângulo de fase $|\phi|$, como função do logaritmo da frequência.

Figura 9. Diagrama de Bode obtido na temperatura ambiente para as amostras dos eletrodos: Carbono Vítreo, Carbono Poroso, ETI-1, ETI-3 e ETI-4.

Em baixas frequências, os ângulos de fase se localizam a 20°, isto é,: as amostras não atuam como resistores puros, enquanto que a altas frequências atuam como capacitores. Dentro de uma determinada faixa de frequências (102 e 102,5 Hz) para os eletrodos de CP, ETI-1, ETI-3 e ETI-4, a impedância é praticamente constante ($10^{0.5}$ ohm). Esta faixa de frequência é dominada por R. Os ângulos de fase atribuídos a estes mesmos eletrodos a altas frequências são próximos a 90°, como se deveria esperar para a situação de idealidade, entretanto, para o eletrodo de CP, o ângulo se aproxima de 80°, o que pode ser explicado por perdas dielétricas [45,46,47].

Todos os eletrodos estudados, com exceção do eletrodo de CV, apresentaram uma morfologia não-compacta e heterogênea com uma dispersão irregular do revestimento, conforme analisadas nas micrografias e confirmadas pelos resultados obtidos pelas análises de EIE.

A EIE oferece a possibilidade de avaliar e comparar a atividade intrínseca dos eletrodos independente de sua composição, formato e método de preparação. O exame dos diagramas de Bode mostrados na FIG.9 indica que o comportamento das condutividades dos eletrodos é de natureza distinta, com predominância para o ETI-1, ETI-3 e ETI-4 que apresentam os valores mais baixos de impedância, mantendo-a praticamente constante até a faixa mais alta de frequência de $10^{2.5}$ s⁻¹ a 10^4 s⁻¹. Esta faixa de freqüências é dominada por fenômenos que ocorrem na interface eletrodo/eletrólito, ou seja, a cinética de reações de transferência eletródica [1,45,46,47].

BET

Com o objetivo de comparar os valores das áreas obtidos por CV e EIE para o eletrodo de CP e para o ETI-1, foram realizadas medidas de BET.

Eletrodo de CP

A análise por BET do Carbono Poroso, para uma área geométrica de 1,531 cm² e massa de 0,2769 g, forneceu uma área superficial específica de 3,2519 m².g⁻¹, que representa uma área superficial de 9,01x10³ cm². Este resultado acima do valor determinado pelo método eletroquímico, 63,7 cm², explica-se pelo fato de o eletrólito não ter acesso à superfície interna da estrutura do eletrodo de carbono poroso. Contudo, o método desenvolvido apresenta resultados coerentes, mas que requer estudos com outros materiais [1,49,50].

ETI-1

A análise por BET do ETI-1 para uma massa de 0,1412 g forneceu como resultado uma área especifica de S= $(23,2 \pm 0,4)x10^4$ cm².g⁻¹, o que determina uma área superficial de 3,27x10⁴ cm². O valor da área encontrado por BET foi superior ao obtido pelos métodos eletroquímicos (9,31) cm², pois por condutância e impedância apenas os materiais condutores contribuem na estimativa da área superficial ativa do eletrodo, o que não ocorre pelo método de BET, pois toda molécula de gás é adsorvida na superfície do eletrodo e contribuirá para a determinação da área superficial.

Conclusão

Neste trabalho, o uso combinado de duas técnicas eletroquímicas, voltametria cíclica e espectroscopia de impedância eletroquímica, permitiu a determinação da área superficial ativa de eletrodos modificados à base de carbono, por meio da determinação da capacitância do material. Este método torna-se atrativo em relação aos métodos clássicos por ser simples e utilizar somente um reagente como eletrólito.

Diferentemente dos outros métodos de determinação de área superficial (BET, porosímetro por intrusão de mercúrio, BJH), a metodologia proposta determina somente a área eletroquimicamente ativa, não considerando a área superficial de outros materiais que possam compor o eletrodo, como no caso dos eletrodos de troca iônica. Desta forma, pode-se determinar com maior precisão a densidade de corrente aplicada nos processos.

A metodologia pode ser também aplicada em outros tipos de materiais que sejam condutores, partindo da determinação da capacitância do material por EIE e a determinação da capacitância aparente por VC, que permite o caçulo da área superficial ativa.

Portanto, a metodologia proposta no presente trabalho apresenta resultados bastante coerentes e representativos dos materiais e meios utilizados.

Agradecimentos

Agradecemos ao CNPq pela bolsa de mestrado concedida.

Referências Bibliográficas

- 1. C. Calas-Blanchard, M. Comtat, J. L. Marty, S. Mauran, Carbon 41 (2003) 123.
- 2. A. Burke, J Power Sources 91 (2000) 37.
- 3. E. Frackowiak, F. Béguin, Carbon 39 (2001) 937.
- 4. H. C. Manosso, Desenvolvimento de eletrodos de troca iônica eletroquímica para o tratamento de rejeitos contendo íons crômio ou césio. 2006. Tese (Doutorado) Instituto de Pesquisa Energéticas e Nucleares, São Paulo.
- 5. H. C. Manosso, C. A. L. G. de O. Forbicini, J. Radional. Nucl. Chem. 279 (2009) 417.
- A. Oliveira Neto, A. Y. Watanabe, R. S. Rodrigues, M. Linardi, C. A. L. G. de O. Forbicini, E.V. Spinacé, Ionics, 14 (2008) 577.
- T. A. B. Santoro, V. A. Ribeiro, C. A. L. G de O. Forbicini, A. Oliveira Neto, E. V. Spinacé, M. Linardi, XVIII Congresso de la Sociedad Iberoamericana de Eletroquímica, Proceedings, 2008, Medelin, Colômbia.
- T. A. B. Santoro, V. A. Ribeiro, C. A. L. G. de O. Forbicini, A. Oliveira Neto, E. V. Spinacé, M. Linardi, R. M. S. Rodrigues, E. Pastor, I Simposium Ibérico de Hidrogênio, Pilas de Combustible y Baterias Avanzadas (HYCELTEC 2008), Proceedings, 2008, Espanha.
- M. F. Bergamini, S. I. Vital, A. L. Santos, N. R. Stradiotto, Eclét. Quím. 31 (2006) 44.
- 10. D. A. Fungaro, Quím. Nova 23 (2000) 805.
- M. I. C. F. Costa, Preparação e caracterização de eletrodos modificados mistos e sue uso em hidrogenação eletrocatalítica de substratos orgânicos. 2006. Tese (Doutorado) – Instituto de Química: Universidade de São Paulo, Ribeirão Preto.
- 12. B. C. Janegitz, L. H. Marcolino, O. Fatibello-Filho, Quím. Nova 30 (2007) 1673.
- 13. G. W. Murphy, B. B. Arnold, Electrochim. Acta 12 (1967) 191.
- 14. S. Evans, W.S. Hamilton, J.E. Lewis, Electrochem. Technol. 6 (1968) 153.
- 15. S. Evans, W.S. Hamilton, J. Electrochem. Soc. 113 (1966) 1314.
- 16. M.D. Neville, C.P. Jones, A.D. Turner, Prog. Nucl. Energy 32 (1998) 397.
- 17. E. G. Franco, Desenvolvimento de Novos Eletrocatalisadores para células a combustível a membrana polimérica trocadora de prótons. 2005. Tese (Doutorado) Instituto de Pesquisa Energéticas e Nucleares, São Paulo.
- D. F. Silva, A. Oliveira Neto, E. S. Pino, M. Linardi, E. V. Spinacé, 17^o Congresso Brasileiro de Engenharia e Ciência dos Materiais – CBECIMat, Proceedings, 2009, Foz do Iguaçú, Brasil.
- 19. F. Stoeckli, T. A. Centeno, Carbon 43 (2005) 1184.
- 20. W. J. R. Santos, P. R. Lima, A. A. Tanaka, S. M. C. N. Tanaka, L. T. Kubota, Food Chem. 113 (2009) 1206.
- 21. S. Brunauer, P. H. Emmett, E. Teller, J. Am. Chem. Soc. 60 (1938) 309.
- 22. E. P. Barrett, L. G. Joyner, P. P. Halenda, J. Am. Chem. Soc. 73 (1951) 373.
- 23. N. Passe-Coutrin, S. Altenor, D. Cossement, C. Jean-Marius, S. Gaspard, Microporous and Mesoporous Mater. 111 (2008) 517.
- 24. J. Serpinet, J. Chromatog. 119 (1976) 483.
- 25. P. Spooner, A. Turner, Surface Technol. 4 (1976) 121.
- 26. L. Moscou, S. Lub, Powder Technol. 29 (1981) 45.
- 27. M. J.. Moura, M. M. Figueiredo, Silva Lusitana 10(2) (2002) 207.
- 28. J. G. Helloco, R. Durand, J. Appl. Electrochem. 26 (1996) 397.
- 29. L.D. Burke, O.J. Murphy, J. Appl. Electrochem. 39 (2009) 213.

- T. Vidackovic, M. Christov, K. Sundamacher, J. Appl. Electrochem. 52 (2007) 5606.
- 31. R. Olives, M. Mauran, Transp. Porous Media 43 (2001) 377.
- M.L. Tremblay, M.H. Martin, C. Lebouin, A. Lasia, D. Guay, Electrochim. Acta 55 (2010) 6283.
- J. C. Botton, Líquidos iônicos como eletrólitos para reações eletroquímicas. 2007. Tese (Doutorado) – Instituto de Química: Universidade Federal do Rio Grande do Sul, Porto Alegre.
- 34. A. Soffer, M. Folmsn, J. Electroanal. Chem. 38 (1972) 25.
- 35. E.G. Gagnon, J. Electrochem. Soc. 120 (1973) 1052.
- 36. E.G. Gagnon, J. Electrochem Soc. 121 (1974) 512.
- 37. Y. Oren, H. Tobias, A. Soffer, J. Electroanal. Chem. 162 (1984) 87.
- 38. K. R. Wehmwyer, R.M. Wightman, J. Electroanal. Chem. 196 (1985) 417.
- 39. F. L. Fertonani, A. V. Benedetti, Eclét. Quím. 22 (1997) 1.
- 40. M. Lazzari, M. Mastragostino, F. Soavi, Electrochem. Commum. 9 (2007) 1567.
- 41. M. R. Jisha, Y. J. Hwang, J. S. Shin, K. S. Nahm, T. P. Kumar, K. Karthikeyan, N. Dhanikaivelu, D. Kalpana, N. C. Bengamathan, A. M. Stephan, Mat. Chem. Phys. 115 (2009) 33.
- 42. J. P. Zheng, C. M. Petit, P. C. Coonetilleke, C. M. Zenger, D. D. C. Roy, Talanta 78 (2009) 1056.
- 43. C. M. A. Brett, A. M. O. Brett, Electrochemistry: Principles, Methods and Applications, Oxford University, 1st ed., 1993.
- 44. S. Wolynec, Técnicas Eletroquímicas em Corrosão, EDUSP, São Paulo: 2003, chap.6.
- 45. P. L. Bonora, F. Deflorian, L. Fedrizzi, Electrochim. Acta 41(7-8), (1996) 1073.
- 46. L. Jianguo, G. Gaoping, Y. Chuanwei, Electrochim. Acta 50(16-17) (2005) 3320.
- 47. M.-L. Tremblay, M. H. Martin, C. Lebouin, A. Lasia, D. Guay, Electrochim. Acta 55(21) (2010) 6283.
- 48. J. Zhang, L. Zhang, C. W. B. Bezerra, H. Li, Z. Xia, J. Zhang, A.L.B. Marques, E.P. Marques, Electrochim. Acta 54(6) (2009) 1737.
- 49. M. M. Rahman,; I. C. Jeon, J. Braz. Chem. Soc. 18 (2007) 561.
- 50. A. F. Azevedo, N. G. Ferreira, Quím. Nova 29(1) (2006) 129.