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New coupling agents such as 2,4-toluene diamine or sulphanilamide for the 

determination of amoxicillin spectrophotometrically are described. These methods 

are straightforward based on the reaction of amoxicillin with diazotized products of 

2,4-toluene diamine or sulphanilamide to produce coloured azo dyes with maximum 

absorption at 462 or 468 nm. Amoxicillin responds linearly from 1.2–24.8 or 1.8–32.0 

g mL–1 when coupled with diazotized 2,4-toluene diamine or sulphanilamide. The 

molar absorptivity and Sandell’s sensitivity of amoxicillin with 2,4-toluene diamine 

or amoxicillin with sulphanilamide azo dyes were 3.307 × 104 or 2.632 × 104 L mol–1 

cm–1 and 1.105×10-2 or 1.388×10-2 g cm-2, respectively. The regression equation, 

correlation coefficient (R2), detection limit and quantitation limit of amoxicillin with 

2,4-toluene diamine or amoxicillin with sulphanilamide were evaluated. The 

percentage recoveries ranged from 97.00 to 100.50 with a relative standard deviation 

value was ± 0.98 to ± 1.85%. The method does not need temperature control or 

solvent extraction and has been applied successfully to determine amoxicillin in 

pharmaceutical preparation (tablets). 
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 The 2,4-toluene diamine and sulphanilamide 

were used for amoxicillin determination. 

 The coupling agents with amoxicillin showed 

high molar absorptivity and sensitivity. 

 The method is very simple, sensitive, accurate, 

and has a high dye stability. 

 The method applied to the analysis of amoxicillin 

in pharmaceutical samples. 
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1. Introduction 

Amoxicillin is a β-lactam penicillin antibiotic with the 

chemical formula C6H19N3O5S, that is active against both gram-

positive and gram-negative bacteria (Wilson et al., 2004). It is used 

to treat a variety of bacterial infections caused by susceptible 

microorganisms, including skin, yeast, urinary tract and middle 

ear infections, strep throat, and pneumonia. Some of the side 

effects include nausea and rash, and those who are allergic to 

penicillin should avoid using it. However, those with kidney issues 

can use it without risk, and it is safe to use during pregnancy and 

breastfeeding (Amoxicillin, 2015). According to the most recent 

report from the European Centre for Disease Prevention and 

Control (ECDC, 2020), the average consumption of antimicrobial 

drugs for systemic use in the European Union in 2019 was 18.0 

defined as daily doses per 1,000 inhabitants per day. After 

consumption, antibiotics are excreted as metabolites and unaltered 

compounds (Boix et al., 2016) together with the high consumption 

of these compounds, it is not surprising that they reach the aquatic 

environment through wastewater discharges (Dinh et al., 2011). 

Thus, the investigation of antibiotic residues in water has become 

an important topic in environmental science, including the 

analytical determination at trace levels (ng L−1 or µg L−1) (Fonseca 

et al., 2020; Hernández et al., 2015; Rossmann et al., 2014). The 

chemical structure of amoxicillin is shown in Fig. 1. 

 

Figure 1. Chemical structure of amoxicillin. 

Amoxicillin works by preventing the synthesis of bacterial 

cell walls (Wilson et al., 2004), and it belongs to the penicillin class 

of antibiotics, which are broad-spectrum, semisynthetic, acid-

stable, orally absorbed antibiotics that inhibit bacterial cell wall 

synthesis (Blumberg and Strominger, 1974). 

According to a review of the literature, there are several 

methods for determining amoxicillin in pharmaceutical samples, 

including voltammetry (Fouladgar et al., 2011; Uslu and Biryol, 

1999; Santos et al., 2008), fluorimetry (Muñoz de la Peña et al., 

2002), colourimetry (Elshafie et al., 1996; Rao and Mohan, 1982), 

liquid chromatography (Aliev and Babazade, 2011; Fabregat-

Safont et al., 2021; Foroutan et al., 2007; Hailekiros et al., 2022; 

Wen et al., 2008), chemiluminescence (Li et al., 2003; Sun et al., 

2005), capillary electrophoresis (Oliva et al., 2011), atomic 

absorption spectrometry (Mahmoud et al., 2008), UV spectroscopy 

(Ergin and Yasa, 2022) and spectrophotometry (Ahmed et al., 

2004; Al-Abachi et al., 2005; Asan and Seddiq, 2022;  Al-Uzri, 

2012; Jalal et al., 2023; Othman and Al-Saffar, 2015; Quanmin and 

Zhanjun, 2006; Singh and Maheshwari, 2010; Ünal et al., 2008). 

However, some of the methods (Ahmed et al., 2004; Al-Abachi et 

al., 2005; Foroutan et al., 2007; Fouladgar et al., 2011; Li et al., 

2003; Mahmoud et al., 2008; Muñoz de la Peña et al., 2002; Oliva 

et al., 2011; Quanmin and Zhanjun, 2006; Sun et al., 2005) 

presented for determining amoxicillin in pharmaceutical dosage 

were associated with major flaws such as tedious extraction 

methods, time consumption, lack of sensitivity, heating issues, and 

cooling effects. 

The diazotization reaction of 2,4-toluene diamine or 

sulphanilamide with sodium nitrite in an acid medium yields 

diazonium compounds, which are then coupled with amoxicillin 

in an alkaline medium to yield yellow water-soluble azo dyes. The 

proposed methods are free of the drawbacks mentioned above and 

they are risk-free, simple, selective, and precise used for the 

determination of amoxicillin—a penicillin antibiotic—in 

pharmaceutical dosage samples by spectrophotometric method. 

2. Experimental 

2.1. Equipment 

A JASCO V-730 spectrophotometer (Serial No. A 

023561798) and pH meter (Eutech Instruments pH 510 Serial o. 

1398504) were used for spectrometric analysis. 

2.2. Chemicals and reagents 

Amoxicillin stock solution (1,000 µg mL–1), (Gift sample 

from Karnataka antibiotics and Pharmaceuticals Limited, 

Bangalore, India): A 0.104 g of amoxicillin was weighed 

accurately and dissolved in 5–10 mL of ethanol, shaken 

thoroughly then the solution is transferred to a 100 mL calibrated 

flask and filled to the proper level with double-distilled water. By 

dilution, the working solution was prepared as needed. 

A 0.1 mol L–1 sodium nitrite solution, 0.5 mol L–1 

hydrochloric acid solution, 1% of 2,4-toluene diamine or 

sulphanilamide solutions each and 0.5 mol L–1 sodium hydroxide 

solution were used. 

Amoxicillin tablets of different trademarks used: 

Vemox 50 (500 mg): Vega Pharma, Panoptic Exim Private 

Limited, Nagpur, Maharashtra. 

Amoxicillin trihydrate (500 mg): Sandmartin 

Pharmaceuticals Private Limited, New Delhi, India. 

EMOX 250 (250 mg): Emkam Pharma private Limited, 

Meerut, India. 

Cipmox-250 (250 mg): Cipla Limited, Mumbai, India. 

Amoxirum forte injection (300 mg): 200 mg amoxicillin 

present with sodium (molecular weight 340.4 mg): 

Karnataka antibiotics and pharmaceuticals Limited, 

Bangalore, India. 

 

Amoxicillin tablets solution (1,000 μg mL–1) 

Amoxicillin tablets/capsules of various brands were 

obtained from a homegrown dispensary and finely powdered. A 

precisely weighed quantity of powder (~ 0.25 g) was dissolved in 

5–10 mL ethanol, then 80–100 mL distilled water was added, 

shaken well, filtered into a 250 mL calibrated flask, then the 

volume was completed to the mark with distilled water and the 

preparation of amoxicillin solution was continued as described 

above. 

2.3. Procedure for the determination of amoxicillin 

In a sequence of 10 mL calibrated flasks, an aliquot of the 

sample solution containing a known quantity of amoxicillin 

(µg mL–1) was added. It was then mixed well for 2 min with the 

addition of 1 mL of a 0.1 mol L–1 solution of sodium nitrite and 

0.5 mL of a 0.5 mol L–1 solution of hydrochloric acid before being 
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set aside to allow the diazotization reaction to finish. After that, 

the mixture was thoroughly mixed after being diluted to 10 mL 

with double-distilled water and added volumes of 1 mL of 1% 2,4-

toluene diamine or sulphanilamide and 1.0 mL of 0.5 mol L–1 

sodium hydroxide solutions. After 5 min the formed coloured azo 

dyes absorbance was measured at 462 or 468 nm in comparison to 

the blank reagent. 

3. Results and discussion 
In the presence of a base, amoxicillin is coupled with the 

diazonium salt of 2,4-toluene diamine or sulphanilamide to 

produce a coloured azo dye. The absorption spectra of the azo dye 

produced by reacting amoxicillin with diazotized 2,4-toluene 

diamine or sulphanilamide (Fig. 2) had an absorption maximum 

at 462 nm or 468 nm, respectively. 

The plot of absorbance versus concentration of amoxicillin 

coupled with diazotized 2,4-toluene diamine or sulphanilamide 

(Fig. 3) demonstrates that the dyes obey Beer’s law in the range 

of 1.2–24.8 g mL–1 of amoxicillin with 2,4-toluene diamine or 

1.8–32.0 g mL–1 of amoxicillin with sulphanilamide. Absorption 

spectra of the azo dye resulted from the reaction of amoxicillin 

with diazotized sulphanilamide against a reagent blank (2) and a 

blank reagent against distilled water (3). 

 

Figure 2. Absorption spectra of the azo dye produced by the reaction of amoxicillin with diazotized 2,4-toluene diamine (1) and 

sulphanilamide (2) against a blank reagent. The blank reagent spectrum is number (3). 

 
Figure 3. Adherence to Beer’s law using amoxicillin coupled with diazotized 2,4-toluene diamine or sulphanilamide. 
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The reactions for steps 1 and 2 are shown in Fig. 4. 

 

 

Figure 4. Diazonium salt of 2,4-toluene diamine or sulphanilamide is coupled with amoxicillin to produce coloured azo dyes. 

3.1. Effect of temperature, acid and base 
concentration 

The effect of temperature on diazotization reactions, room 

temperature (25 ± 5 °C) is advised because the loss in colour 

stability and intensity was seen at low and high temperatures. 

The effect of acid on the diazotization reaction of 

amoxicillin (2 µg mL–1) was examined by adding different acid 

solutions (0.5 mol L–1), such as HCl, H2SO4, CH3COOH and 

HNO3. It was discovered that when amoxicillin was coupled with 

a diazotized 2,4-toluene diamine or sulphanilamide, CH3COOH 

produced low absorbance with low colour stability while HCl 

produced high absorbance with highest colour stability. 

Therefore, for the amoxicillin diazotization reaction, 0.5 mL of 

0.5 mol L–1 HCl was preferred (Table 1). 

 

Table 1. Effect of acid concentration. 

0.5 mol L–1 acid concentration 

Absorbance (A) / mL of acid used 

2,4-toluene diamine Sulphanilamide 

0.25 mL 0.5 mL 0.75 mL 0.25 mL 0.5 mL 0.75 mL 

Hydrochloric acid 0.280 0.362 0.348 0.302 0.344 0.340 

Sulfuric acid 0.256 0.292 0.306 0.288 0.276 0.287 

Acetic acid 0.222 0.246 0.212 0.228 0.244 0.286 

Nitric acid 0.248 0.284 0.293 0.232 0.248 0.262 
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The effect of the base on the diazotization reaction of 

amoxicillin (2 µg mL–1) was examined by adding different base 

(0.5 mol L–1) solutions such as NaOH, KOH, NH4OH and 

Na2CO3. It was discovered that when amoxicillin was coupled 

with diazotized 2,4-toluene diamine or sulphanilamide, Na2CO3 

produced low absorbance and NaOH produced high absorbance 

with highest colour stability. Therefore, for the amoxicillin 

diazotization reaction 1.0 mL of 0.5 mol L–1 NaOH solutions was 

preferred (Table 2). 

3.2. Effect of coupling reagents and nitrite 
concentration 

In the current method, 2,4-toluene diamine or 

sulphanilamide is used as a coupling agent by adding 0.50 to 

2.0 mL of 1% 2,4-toluene diamine or sulphanilamide to a series of 

nitrite solutions. In an ultimate volume of 10 mL, it was 

discovered that 1 mL of 2,4-toluene diamine or sulphanilamide 

(1%) solution produced the brightest and firmest colour (Table 3). 

Using the current method with 2 µg mL–1 of amoxicillin 

and adding 1 mL of 0.025-0.150 mol L–1 solutions of the nitrite in 

hydrochloric acid (0.5 mol L–1) to a series of nitrite solutions, the 

colour reaches its peak intensity when using 1 mL of 0.1 mol L–1 

sodium nitrite solution. Higher concentrations failed to further 

increase the absorbance while lower concentrations gave poor 

results (Table 4). 

3.3. Effect of interference 

The determination of amoxicillin in the presence of 

various excipients such as lactose (800 µg mL–1), fructose 

(1,000 µg mL–1), glucose (1,200 µg mL–1), urea (300 µg mL–1) and 

starch (600 µg mL–1) did not interfere with the determination of 

the excipients. 

Table 2. Effect of Base concentration. 

0.5 mol L–1 acid concentration used 

Absorbance (A) / mL of Base used 

2,4-toluene diamine Sulphanilamide 

0.5 mL 1.0 mL 1.5 mL 0.5 mL 1.0 mL 1.5 mL 

Sodium hydroxide 0.260 0.282 0.266 0.284 0.244 0.264 

Potassium hydroxide 0.236 0.262 0.242 0.264 0.224 0.257 

Ammonium hydroxide 0.214 0.254 0.204 0.242 0.208 0.246 

Sodium carbonate 0.138 0.222 0.188 0.202 0.196 0.220 

Table 3. Effect of 2,4-toluene diamine or sulphanilamide solution on absorbance. 

1% 2,4-toluene diamine or sulphanilamide 
solution used (mL) 

Absorbance (A) for 2,4-toluene diamine Absorbance (A) for sulphanilamide 

0.50 0.284 0.264 
1.00 0.316 0.328 
1.50 0.302 0.312 
2.00 0.296 0.294 

Table 4. Effect of sodium nitrite. 

1 mL of NaNO2 solution (mol L–1) 
Absorbance (A) 

2,4-toluene diamine sulphanilamide 

0.025 0.164 0.182 
0.050 0.188 0.194 
0.075 0.192 0.226 
0.100 0.288 0.264 
0.125 0.248 0.246 
0.150 0.240 0.232 

 

3.4. Analytical data 

Plotting absorbance versus concentration of amoxicillin 

resulted in a straight line on the graph. Beer’s law is obeyed 

between the concentrations of 1.2–24.8 g mL–1 of 

amoxicillin with 2,4-toluene diamine or between the 

concentrations of 1.8–32.0 g mL–1 with sulphanilamide. The 

molar absorptivity of the coloured azo dye of amoxicillin coupled 

with the diazonium salt of 2,4-toluene diamine or sulphanilamide 

was found to be 3.307 × 104 L mol–1 cm–1 or 2.632 × 104 L mol–1 

cm–1, and the Sandell’s sensitivity of coloured system with a 

nitrite-2,4-toluene diamine or nitrite-sulphanilamide were found 

to be 1.105 × 10–2 g cm–2 or 1.388 × 10–2 g cm–2 with maximum 

absorption at 462 or 468 nm (Fig. 2 and 3). 

The regression equation and correlation coefficient (R2) of 

amoxicillin with 2,4-toluene diamine or amoxicillin with 

sulphanilamide were y = 0.092x – 0.004, or y = 0.079x – 0.026 

and R2 of 0.998 or 0.999 and have high dye stability (more than 

10 h). The detection limit (DL = 3.3/S) and quantitation limit 

(QL = 10/S) of amoxicillin coupled with diazotized 2,4-toluene 

diamine or sulphanilamide were found to be 0.351 g mL–1 or 

0.420 g mL–1 and 1.065 g mL–1 or 1.274 g mL–1 (where  = 

Standard Deviation, [n = 5] and S = slope of the curve). The better 

optical characteristics and statistical data were obtained under 

optimum conditions (Table 5). 
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Table 5. Determination of amoxicillin in various pharmaceutical samples. 

Pharmaceutical Samples Sample taken (μg mL–1) 

Using 2,4-toluene diamine Using sulphanilamide 

Sample founda 
(μg mL–1) ± %RSD 

Rec. (%) 
Sample founda 1 

(μg mL–1) ± %RSD 
Rec. (%) 

Vemox 500 
(500 mg/tab) 

04.00 3.92 ± 1.43 98.00 3.96 ± 1.62 99.00 
08.00 7.91 ± 1.24 98.87 7.92 ± 1.46 99.00 
12.00 11.94 ± 1.32 99.50 11.90 ± 1.46 99.16 
16.00 15.90 ± 1.20 99.34 15.84 ± 1.28 99.00 
20.00 19.92 ± 1.26 99.60 19.90 ± 1.42 99.50 

Amoxicillin Trihydrate 
(500 mg/tab) 

04.00 3.94 ± 1.48 98.50 4.02 ± 1.22 100.5 
08.00 7.90 ± 1.24 98.70 7.98 ± 1.46 99.75 
12.00 11.88 ± 1.44 99.00 11.92 ± 1.32 99.33 
16.00 15.86 ± 1.26 99.12 15.90 ± 1.36 99.37 
20.00 19.92 ± 1.35 99.6 19.82 ± 1.45 99.10 

EMOX 250 
(250 mg/tab) 

04.00 3.90 ± 1.23 97.50 3.94 ± 1.28 98.50 
08.00 7.92 ± 1.44 99.00 7.88 ± 1.32 98.50 
12.00 11.88 ± 1.66 99.00 11.90 ± 1.45 99.17 
16.00 15.92 ± 0.98 99.50 15.88 ± 1.42 99.25 
20.00 19.86 ± 1.46 99.30 19.80 ± 1.26 99.00 

Cipmox-250 
(250 mg/tab) 

04.00 4.00 ± 1.54 100.0 3.94 ± 1.44 98.50 
08.00 7.90 ± 1.22 98.75 7.96 ± 1.28 99.50 
12.00 11.94 ± 1.49 99.50 11.88 ± 1.54 99.00 
16.00 15.94 ± 1.27 99.62 15.86 ± 1.64 99.12 
20.00 19.90 ± 1.33 99.50 19.82 ± 1.24 99.10 

Amoxirum forte injection 
(300 mg/tab) 

04.00 3.92 ± 1.42 98.00 3.88 ± 1.26 97.00 
08.00 7.91 ± 1.22 98.87 7.92 ± 1.34 99.00 
12.00 11.94 ± 1.26 99.50 11.84 ± 1.52 98.67 
16.00 15.86 ± 1.34 99.12 15.84 ± 1.26 99.00 
20.00 19.80 ± 1.65 99.00 19.78 ± 1.85 98.90 

a. Mean (n=5)  %RSD {relative standard deviation}. 

3.5. Applications 

Amoxicillin can be found in a variety of pharmaceutical 

samples using the provided method, which is straightforward and 

easy to use. The findings of the recommended methodology 

closely correspond to the acknowledged content. For all five 

samples, the percentage recoveries ranged, with a 95% level of 

confidence, from 97.00 to 100.50 and the relative standard 

deviation value was 0.98–1.85%. The appearance of 

pharmaceutical samples containing additional ingredients had no 

negative effects. The outcomes are contrasted with the endorsed 

spectrophotometric method (Al-Uzri, 2012; Othman and Al-

Saffar, 2015). These attest to the fact that the proposed method 

and the recommended method are not significantly different. To 

evaluate precision and accuracy, replicate analyses were 

performed on five different samples that contained amoxicillin at 

various concentrations (Table 5). 

4. Conclusions 
New coupling agents such as 2,4-toluene diamine or 

sulphanilamide, used for the spectrophotometric determination of 

amoxicillin, are reasonably priced and selective. Compared to 

some of the reported methods, the procedure is very simple, fast, 

sensitive, accurate, and has a high dye stability (more than 10 h). 

The method need not involve time-consuming separation 

or solvent extraction procedures and the high accuracy and 

precision of the proposed methods are highlighted by their low 

percentage relative standard deviation and percentage recovery 

values. The proposed methods produce precise, repeatable results 

that are free from excipient interference and was applied to the 

analysis of amoxicillin in pharmaceutical samples. 
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