| Vol. 45 | n. 4 | 2020 |

Supplementary information 1 Electrochemical noise analysis to obtain the *R*_{sn} value via FFT using Excel

Sidineia Barrozo¹, Riberto Nunes Peres², Marcus José Witzler³, Assis Vicente Benedetti², Cecílio Sadao Fugivara²⁺

1. São Paulo State University (Unesp), Institute of Chemistry, Engineering, Physics and Mathematics Department, Araraquara, São Paulo, Brazil

2. São Paulo State University (Unesp), Institute of Chemistry, Department of Analytical Chemistry, Physical Chemistry, and Inorganic, Araraquara, São Paulo, Brazil

3. EMBRAER

Eclética Química

Journal

+Corresponding author: Cecilio Sadao Fugivara, Phone: +55 16 33019654, Email address: sadao.fugivara@unesp.br

ARTICLE INFO	Keywords:
	1. ENA
Article history:	2. Excel
Received: June 02, 2020	3. spectral electrochemical noise resistance
Accepted: August 06, 2020	4. detrending
Published: October 01, 2020	5. Hann window

The **Supplementary Information 1** describes the procedures to calculate R_{sn}^0 using Origin[®] software and to obtain electrochemical noise data, and a file .xlms with the experimental data used to applied the described routine.

How can ENA data be analyzed using Origin[®] software?

To make the same analysis, described in the main text, using Origin[®] software follows the steps below:

Copy the data of time (t), potential (E(t) – $y_E(t)$) and current (I(t) - $y_I(t)$) in the first three

columns (A, B and C). Divide the current values by the electrode area and put the results in column D (select the column D and follows the commands: Column \rightarrow Set Columns Values \rightarrow in the box, type Col(C)/area value \rightarrow Ok).

Select the potential column and follows the commands: Analysis \rightarrow Signal Processing \rightarrow FFT \rightarrow FFT \rightarrow Open Dialog (Fig. S1a). In the window that appears, choose the option Window Hanning \rightarrow uncheck Shift \rightarrow in Spectrum Type box, choose One-sided \rightarrow uncheck Result Graph Sheet \rightarrow Ok (Fig. S1b). If you do not use the Hann window, mark Window Rectangle, as in Fig. S1c:

sheet	Analysis Statistics Imag	e Tools Format	Window Help					
2 🐔	Mathematics	🕾 🗾 🗆 🛃	1 🗖 🖽 🗹 🤬 🕂 🖷	' ⊁ ≌ 🛍 +□	+			
*2 *	Data Manipulation 🕨	- A - 8						
<u>^</u> ^;	Fitting •	[·▲·]] <u>∞</u>						
	Signal Processing 🔶	Smoothing	· 🔰 🚮 💋 !!	5 % % -				
	Spectroscopy 🕨 🕨	FFT Filters						
1	<u>1</u> Fit Linear	FFT 🕨	FFT 🔸	<u>1</u> <last used=""></last>				
	<u>2</u> FFT	Wavelet	IFFT	Open Dialog	(Y) H(Y) ^			
	3 FFT Filters	Potential (E) Cu	STFT					
	4 Smoothing	V	Convolution					
	Commenta		Deconvolution					
	1 0	-1,7299E-5 -4,	£					
	2 1,0	-1,7120E-5 -4,	Coherence					
	3 2,0	-1,5184E-5 -4,	Correlation					
	4 3,0	-1,4855E-5 -4,	0					
	5 4,0	-1,0838E-0 -3,	a Hilbert Iransform					
	0 5,0	-1,5780E-5 -3,	4634E-9 -1,2077E-0					
	r 0,0	-1,04001-0	a)					
			a)					

Signal Processing\FFT: ff	ít1	Signal Processing\FF	T: fft1	
Dialog Theme <factory default<="" td=""><td>Þ ~ E</td><td>Dialog Theme <factory de<="" td=""><td>fault></td><td>- 8 6</td></factory></td></factory>	Þ ~ E	Dialog Theme <factory de<="" td=""><td>fault></td><td>- 8 6</td></factory>	fault>	- 8 6
Description Fast Fourier transfo	orm on input vector (discrete Fourier transforms)	Description Fast Fourier tra	ansform on input vector (discrete Fourier transfor	ms)
🗆 Input	[Book1]Sheet1!B''Potential''	D Input	[Book1]Sheet1!B''Potential''	⊾ ►
Imaginary		Imaginary		₹ ►
Sampling Interval	1.00049 🖂 A	ito Sampling Interval	1.00049	🗹 Auto
🗆 Options		🖂 🖂 Options		
Window	Hanning 🗸	Window	Rectangle \sim	
Shift		Shift		
Unwrap phase		Unwrap phase		
Factor	-1 (Electrical Engineering) \vee	Factor	-1 (Electrical Engineering) \sim	
Spectrum Type	One-sided \sim	Spectrum Type	One-sided \sim	
Normalize power to	MSA-Mean Square Amplitude $\qquad \sim$	Normalize power to	MSA-Mean Square Amplitude 💦 🗸 🗸	ł
Preview	Amplitude/Phase \sim	Preview	Amplitude/Phase \sim	
🛨 Plot		🗄 🖽 Plot		
Result Data Sheet	[<input/>] <new></new>	Result Data Sheet	[(<input/>] <new></new>	1 N
Result Graph Sheet		Result Graph Sheel	t	
Recalculate	Manual 🗸	Recalculate	Manual V	
	b)		c)	

Figure S1. FFT Origin[®] command with (B) and without (C) Hann window.

A new tab is created (FFTResultData1) that has all necessary information to potential analysis, including frequency and PSD_E , which is in

column of "Power as MSA". Repeat the proceeding for the column of the current. The Fig. S2 shows the tab FFTResultData1.

III Book1										—
	A1(X) 🛍	A2(Y) 🔒	A3(Y) 🏛	A4(Y) 🙃	A5(Y) 🙃	A6(Y) 🏛	A7(Y) 🏛	A8(Y) 🏛	A9(Y) 🏛	^
Comments	ts FFT of [Book1]Sheet1!B"Potential"									
Long Name	Frequency	Complex	Real	Imaginary	Magnitude	Amplitude	Phase	Power as MSA	dB	
1	0	-9.86848E-4	-9.86848E-4	0	9.86848E-4	4.8186E-7	180	2.32189E-13	-126.34159	
2	4.88043E-4	0.00431 - 6.17038E-4i	0.00431	-6.17038E-4	0.00436	4.25509E-6	351.85882	9.05291E-12	-107.42182	
3	9.76086E-4	-0.0062 + 0.0018i	-0.0062	0.0018	0.00645	6.30026E-6	523.80493	1.98466E-11	-104.01283	
4	0.00146	0.0031 - 0.00226i	0.0031	-0.00226	0.00384	3.74519E-6	683.86978	7.01322E-12	-108.53052	
5	0.00195	-0.00263 + 0.00183i	-0.00263	0.00183	0.0032	3.12707E-6	505.23902	4.88928E-12	-110.09725	
6	0.00244	9.8727E-4 + 5.12694E-4i	9.8727E-4	5.12694E-4	0.00111	1.08638E-6	387.44305	5.90114E-13	-119.28034	
7	0.00293	0.00124 - 0.00188i	0.00124	-0.00188	0.00225	2.19987E-6	303.48338	2.41971E-12	-113.15207	
8	0.00342	5.61276E-4 - 2.89181E-5i	5.61276E-4	-2.89181E-5	5.6202E-4	5.48848E-7	357.05061	1.50617E-13	-125.21096	
9	0.0039	-8.04048E-4 - 9.3031E-4i	-8.04048E-4	-9.3031E-4	0.00123	1.2008E-6	229.16381	7.20963E-13	-118.41057	~
Sheet1 AFFTResultData1 (FFTResultData2 /										۰

Figure S2. Results of the FFT routine applied to Potential data using Origin[®].

Copy the column "Power as MSA" of the tab FFTResultData1 (PSD_E) and paste it in column E of the Sheet1 and repeat the proceeding for Current density (i), pasting the PSD_I in column F of the Sheet1.

Select the column G in the Sheet1 and follow the commands: Column \rightarrow Set Columns Values \rightarrow in the box, type Sqrt(Col(E)/Col(F)) \rightarrow Ok, to calculate R_{sn} . Figure S3 shows this proceeding.

■ Set Values - [Book1]Sheet1!Col(G) — □ ×
Formula wcol(1) Col(A) F(x)
Row (i): From Auto To Auto
K< <>>> >>I Col(G) =
Sqrt(Col(E)/Col(F))
Recalculate None ~ Apply Cancel OK ¥
Figure S3 Command to calculate $\sqrt{PSD_E}$

Copy the frequency column (Freq(X)) of the tab FFTResultData1 and paste it in column H of the Sheet1. In the column I calculate $\log f$ making: select the column I \rightarrow Column \rightarrow Set Columns Values \rightarrow in the box, type log(Col(H)) \rightarrow Ok. Use the same proceeding to calculate $\log(R_{sn})$ in the column J. Your folder Sheet1 ¹⁰ should look like Fig. S4.

Book1											×
	A(X)	B(Y)	C(Y)	D(Y)	E(Y)	F(Y)	G(Y)	H(Y)	I(Y)	J(Y)	^
Long Name	Time (t)	Potential (E)	Current (I)	density (i)	Power a	as MSA	Rsn	Frequency	log (freq)	log(Rsn)	
Units	S	V	A	A cm ²							
Comments					PSDE	PSDi					
1	0	4 70005 5		-1,6084E-8	2,3219E-13	5,4470E-22	2,0646E4	0		4,3148E0	
	U	-1,7299E-5	-4,5357E-9								
2	1,0	-1,7120E-5	-4,3817E-9	-1,5538E-8	9,0529E-12	1,1946E-19	8,7052E3	4,8804E-4	-3,3115E0	3,9398E0	
3	2,0	-1,5184E-5	-4,1596E-9	-1,4750E-8	1,9847E-11	6,6572E-19	5,4601E3	9,7609E-4	-3,0105E0	3,7372E0	
4	3,0	-1,4855E-5	-4,0066E-9	-1,4208E-8	7,0132E-12	2,1610E-19	5,6968E3	1,4641E-3	-2,8344E0	3,7556E0	
5	4,0	-1,5838E-5	-3,8534E-9	-1,3664E-8	4,8893E-12	2,7131E-21	4,2451E4	1,9522E-3	-2,7095E0	4,6279E0	
6	5,0	-1,3780E-5	-3,5750E-9	-1,2677E-8	5,9011E-13	2,6159E-20	4,7496E3	2,4402E-3	-2,6126E0	3,6767E0	
7	6,0	-1,6460E-5	-3,4634E-9	-1,2281E-8	2,4197E-12	1,6253E-20	1,2202E4	2,9283E-3	-2,5334E0	4,0864E0	
8	7,0	-1,6486E-5	-3,3493E-9	-1,1877E-8	1,5062E-13	2,1267E-20	2,6612E3	3,4163E-3	-2,4664E0	3,4251E0	
9	8,0	-1,4873E-5	-3,2256E-9	-1,1438E-8	7,2096E-13	6,7114E-21	1,0365E4	3,9043E-3	-2,4085E0	4,0156E0	
Sheet1 {FFTResultData1 {FFTResultData2 / / / / / / / / / / / / / / / / / / /											

 $\bigvee PSD_I$

Figure S4. Table of sheet1 with necessary values to calculate R_{sn}^0 .

To make the graph select the column $I \rightarrow$ Column \rightarrow Set as <u>X</u>; select the column $J \rightarrow$ Column \rightarrow Set as <u>Y</u>. How the study is made in low frequency, select only the values of interesting to make the fit. In this case, the interval between row 2 and 29 was chosen to compare with Excel results (using Hann window). Make the graph using the commands: Plot \rightarrow Line \rightarrow Line (see Fig. S5).

File	Edit View	Plot	Column	Worksheet	Α	nalysis	Statisti	cs Image	
	P 🖬 🍇	L	Line 🔸					1.	
		Symbol 🕨			⊦ _	ٰ <u>H</u> orizontal Step			
Ť	Default: A 🗸	L	Line + Symbol			✓ Vertical Step			
2		C	olumns/Ba	irs	۲	<mark>v^ S</mark> pline ∋			
		N	/ulti-Curve		١Ī				
R	🚞 Example	3	D XYY		۱ł				
Đ,		3	D XY <u>Z</u>		۱	Воо	k1		
Q		3	D Surface		ſ			A(X1)	
+		S	tatistics		• [Long	Name	time	
in l		A	rea		۰l		Units	S	
123 -			ontour		.	Con	nments		
*			ontour		1		16		
+		S	pecialized		۲I			15.00733	
*		🖾 I	emplate Lik	orary			17	16.00782	

Figure S5. Commands to make a graph using line.

Fit the straight line to graph (linear regression) by commands: Analysis \rightarrow Fitting \rightarrow Linear Fit \rightarrow Ok. A new tab will be open, and the values of slope and intercept are presented in Parameters, like in the Fig. S6. Use these parameters to calculate R_{sn}^0 , as described in the paper.

Figure S6. Results of the linear regression.

Obtention of electrochemical noise data

Current and potential noise data were obtained in a Potentiostat / Galvanostat Reference 600 using the ESA410 software, from GAMRY Instruments[®]. The data contained in the spreadsheets were treated with the Excel software and compared with the treatment made with the Origin[®] software, with and without the Hann window option.

Electrochemical noise measurements were carried out using carbon paste electrodes modified with chalcopyrite powder. The powdered chalcopyrite ($\phi_{average} = 38 \mu m$) stored in argon atmosphere was mixed with graphite powder (Alfa Aesar, $\phi_{average} = 42 \mu m$) in the proportion of 50 wt.% plus a drop of binder (mineral oil) and 0.6 mL of chloroform, according to the literature¹. The resulting paste was placed on a cavity electrode, constituting the carbon paste electrode (CPE), expounding an area of 0.282 cm² to the solution.

The solution *A* of the T&K medium² containing 0.5 g L^{-1} of each of Mg²⁺ and NH₄⁺ sulfate and potassium phosphate salts, 0.08 mol L^{-1} ionic strength, pH 1.8 (adjusted with diluted H₂SO₄) plus 0.020 mol L^{-1} CuSO₄ was used as electrolyte.

The electrochemical cell (Fig. S7) consisted of a glass cylinder placed horizontally, having two similar CPE electrodes fixed to the opposite sides of the cylinder and a reference electrode of Ag/AgCl/KCl3mol L⁻¹ in a Lugging capillary positioned close to one of the CPE electrodes. Once the electrochemical cell was connected to the potentiostat, all current and potential filters were activated for automatic scaling. The electrochemical cell was switched on and the potential and current noise were expected to stabilize before starting to record the 2048 points at the frequencies of 1 Hz. The experiments last 34 min and 8 s (1 Hz). Experimental data are in Excel in Supplementary information 2.

Figure S7. Electrochemical cell for obtaining the ENA data.

References

[1] Horta, D. G., Bevilaqua, D., Acciari, H. A., Garcia Júnior, O., Benedetti, A. V., Optimization of the use of carbon paste electrodes (CPE) for electrochemical study of the chalcopyrite, Química Nova 32 (7) (2009) 1734-1738. https://doi.org/10.1590/S0100-40422009000700010.

[2] Tuovinen, O. H., Kelly, D. P., 1973. Studies on the growth of *Thiobacillus ferrooxidans*, Archiv für Mikrobiologie 88 (4) (1973) 285-298. https://doi.org/10.1007/BF00409941.