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ABSTRACT: The main objective of this research work is

theoretical investigate the bound state solutions of the non- Bound State Solution of the Schridinger Equation
relativistic Schrédinger equation with a mixed potential composed

of the Inversely Quadratic Yukawa/Attractive Coulomb potential mA+2Dy, —21/05)2/
plus a Modified Kratzer potential (IQYCKFP) by utilizing the E =D s
Wentzel-Kramers-Brillouin (WKB) quantum theoretical formalism. e o

The energy eigenvalues and its associated wave functions have {(,H}/)Jr \/(g+}/) V —Dr? }Z
successfully been obtained in sequel to certain diatomic molecules 2

includes; HCL, HBr, LiH.

1. Introduction

One of the interesting problems in quantum mechanics is to get exact solutions of the Schrodinger equation.
To do this, a real potential is often selected to serve as the driving force of the energy eigenvalues and the
eigenfunctions of the Schrodinger equation™™. These state solutions reveal the particle dynamics in non-
relativistic quantum mechanics®. Numerous researchers have investigated the bound states of the Schradinger
equation using variety of potentials and quantum formalism. Some of these potentials play critical roles in
many fields of Physics such as Molecular Physics, Solid State and Chemical Physics®. The Manning-Rosen
potential has been studied in-depth and have also been utilized in quantum systems and Yukawa potential, and
its classes have been studied in Schrodinger formalism®®

In this work, using the Wentzel, Kramers and Brillouin (WKB) quantum approximation, we shall
investigate the bound state solutions of the Schrodinger equation using a combination of potentials known as
the Inversely Quadratic Yukawa/Attractive Coulomb potential plus a Modified Kratzer potential (IQYCKFP).

2. The WKB Theoretical Approximation

In this section, we consider the quasiclassical solution of the Schrodinger’s equation for the spherically
symmetric potentials. Given the Schrodinger equation for a spherically symmetric potentials V() of Equation
3as

1 92 1

(=i0)? (3 + 750z + 77 397 ) V(. 0,0) = [2m(E =V ()] %6, ) 1)
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The total wave function in Equation 3 can be defined as
¥(1,6,¢) = [rRM][Vsin60()P(¢)] 2)

And by decomposing the spherical wave function in Equation 1 using Equation 2 we obtain the following
equations:

(-2) RG) = [2m(E - V() - 2] R, 3)
(-iv L) o0 = [i12 - 20 o), 4)
(~b2) o(9) = MEe() ©)

where M2, M2 are the constants of separation and, at the same time, integrals of motion. The squared
R 2
angular momentum M? = (l + %) h2.
Considering Equation 6, the leading order WKB quantization condition appropriate to Equation 3 is

[P dr = (n+3),n=0,1, 2 (6)

where r, & r; are the classical turning point known as the roots of the equation

P2(r)=2m(E-V({@)) - (Hé# =0 (7)

Equation 9 is the WKB quantization condition which is subject for discussion in the preceding section.
Consider Equations 5-7 in the framework of the quasi-classical method, the solution of each of these equations
in the leading b approximation can be written in the form

WKB () — __4 i 2
YWEB (1) = o &P [i . [\P2(r) dr] 8)
3. Solutions of the Schrédinger Equation
The Wentzel, Kramers and Brillouin surmise has been of tremendous importance to physicist, chemist,
mathematician as regards quantum mechanics in view of the fact that it gives approximate solutions to linear

differential equations. The inversely quadratic Yukawa/attractive Coulomb plus Kratzer Fues potential can be
expressed thus

V(r)= —r—12 o) + %(2V05 —A)+ (—2V0)52 and v/ (r) = D, (ﬂ)z (9)
r

The sum of these potentials can be written as

NS AV 2Dr. Dr?
e L &
51 Eclética Quimica Journal, vol. 44, n. 3, 2019, 50-55

ISSN: 1678-4618
DOI: 10.26850/1678-4618eqj.v44.3.2019.p50-55


https://doi.org/10.26850/1678-4618eqj.v44.3.2019.p50-55

Original article

2 2
2V05_é_2Dere_\Lng Dezre +£(£+1)2h (1)
r r r r r 2mr

Ve ry = De = 2V,0° +

Q(r) = \/Zm(E Vet () (12a)

Equation 12a stands for the classical formula for momentum.

rb

jQ(r)dr=(n+%)nh;n=o, 1,2,3... (12b)
ra

Upon, substituting Equations 11 and 12a into 12b i.e. the (WKB) we have

T\/Zm(E —D, +2V,6” - 2l A DL \i‘Derez_€(£+1)h2jdr=(n+%)nh

A r oy rr r? 2mr?

Factoring out \/2mM (13)
— B 2 b A 2D Vo DY A +1)h B (14)
ij\/(E D+ Vo™ - T TRy 2m _(n+}/)

B

Jam | \/r—l{(E =D, + g8 )1* + (25 + A+ 2D,1,)r (D - %ﬂ r (15)

rA

:n+%7zh

Mi%\/ {(E +/6° =D, )r* +(A+2D,1, - N,d)r —(Derj -V, +%ﬂdr
:(n +%)7zh

~A=E,+2V,6°-D

M =A+2D,r,-2V,0 | where the negative sign on -(A) indicates a bound state.

00+ D)h?
2m

(16)

N =D,r2 -V, +

e'e

Upon substituting the representations made into Equation 16 we have

\/%T%(\/—Aerer—N)dr:(n+%)7rh. (17)
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Factoring out \/ A , we have

A oo

M
X represent X andy as —

\/Zm,&rf%(\/—rz+xr—y)dr:(n+%)7zh. (19)

rb
~c]
\/ZmAj—\/(r—ra)(rb—r)dr=(n+%)7zh. (20)
ra r
Where we obtain the classical turning points I, and I, from the terms inside the square roots as;

_4/2_ X% = r+r =X
X2 4y,rb=X+X2 4y N/N:{a b } 1)

rarb = y
Recall
21 1
IF\/(r—ra)(rb —r)drzﬁ[g(ra +rb)—4/rarb} 22)

J2mA %(x—z\/?)z(m%)nh 23)

2
A 2mM (20)

4[h(n +%)+\/MT

Upon substituting the coefficients of M, N, A into Equation 24 to obtain the energy eigenvalue.

2m(A+2D,r, — 2V,0)* (25a)

{ (n+15)+n \/2mDr —2mVo +£(£+1)}2

Initiating the Langer correction term f f—i—l (€+ }/)

~E,-2V,6°+D, =
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m(A+2D,1, — 2V,5)°
o (25b)

2
2.2m
[(n+%)+\/(€+%) —?(V0 - Derez)}
The above equation results in the bound state energy spectrum with respect to quantum numbers of a

vibrating-rotating diatomic molecule subject to the (IQYCKFP) potential. Thus, its corresponding wave
function is given as

12 2
el e | )
e

E,=D,-2V,5% -

ne

Rne(r) = Nner
| (34 + 220 ) (2020 7| e
4. Discussion

Having obtained the Energy Eigen Value and its corresponding (l//) using the WKB approach for the
Schrodinger equation  with the (IQYCKFP), we understood that if we set up parameters
D, =0, V, =0 and A= Ze?

m(A- 2v05)2/
2
E, =-2V,6% - 2h

n+%+\/(£+%)2—i;nvo

3 (27)

5. Conclusions

It is much easy to show that Equation 19 has resulted to a bound state energy spectrum of a vibrating
rotating diatomic molecule subject to the inversely quadratic Yukawa plus attractive coulomb potential.

Similarly, if D, #0, V, =0 and A= Ze* =0

m(2D,r,)?
-D 2n” (28)

i3 e 2|

Equation 28 results to a bound state energy spectrum subject to Kratzer Fues potential.

ne
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