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Abstract: The arbitrary angular momentum solutions of the Schrédinger equation for
a diatomic molecule with the general exponential screened coulomb potential of the form

V(r)=(—a/r){l+(1+b Je 20 } has been presented. The energy eigenvalues and the corresponding
eigenfunctions are calculated analytically by the use of Nikiforov-Uvarov (NU) method which
is related to the solutions in terms of Jacobi polynomials. The bounded state eigenvalues are
calculated numerically for the 1s state of N, CO and NO

Keywords: Nikiforov-Uvarov method, Eigenvalues, Eigenfunctions, General Exponential Screened Cou-
lomb Potential.

Introduction A more general exponential screened cou-
lomb (MGESC) potential used in this paper is of

The exact analytic solutions of the wave the form [6]:

equations (non-relativistic and relativistic) are a

only possible for certain potentials of physical in- V()= (—?}H (L+b Jexp(~2b )} 1)
terest under consideration since they contain all . )

the necessary information on the quantum system where a is the strength coupling constant

[1]. It is known that for certain potentials, the and b_is the s_creened parameter. The potential in
Schrédinger equation can be solved for the angu-  €duation (1) is known to describe adequately the
lar momentum quantum numbers £=0 [2]. How- effective interaction in many-body environments
ever in some cases. like for the £ # 0 states. some of a variety of fields [6]. In this paper, we have de-

A . . cided to explore the possibility of also using it in
approximations are often used to obtain analytic  optaining bound state solutions of the Schrodinger
solutions of the Schrdédinger equation [3 — 5].

equation for diatomics using Nikiforov-Uvarov
(NU) method.
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Overview of Nikiforov-Uvarov (NU) Method

The NU method is based on the solutions
of general second order linear differential equa-
tions with some orthogonal functions [7]. For the
given potential, the Schrédinger equation in the
spherical coordinates is reduced to a generalized
equation of hyper-geometric type with an appro-

priate $=5(") coordinate transformation. Thus, it
has the form [8]:

v B vl -0 @

where () and S() are polynomials, at most

Second-degree, and i(s) is a first-degree polyno-
mial. To find a particular solution of equation (2),
we use the following transformation [9]:

w(s)=0(s)y(s) (3)
This reduces Schroédinger equation (2) to

an equation of hyper-geometric type:

o(s)y”+1(s)y’ +Ay =0 (4)

where 0(5) satisfies (s)/¢(s)=m(s)/(s)
y(s) is the hyper-geometric type function whose
polynomial solutions are given by the Rodrigues
relation:

—iic”s s
ynle)= s "6l ©

where Bn is a normalization constant and
the weight function P must satisfy the condition

[9]:
[os)p(s)f = <lsk(s) 6)

The function ™ and the parameter A re-
quired for this method are defined as:

7 _ 4 _— 2
1t=6_ri (G_TJ —-0+ko )
2 2
and
A=k+7 8
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Here, m(s) is a polynomial with the param-
eter s and the determination of k is necessary for

m(s) to be obtained. To find k, the expression un-
der the square root must be square of a polynomi-
al. A new eigenvalue equation for the Schroding-
er equation thus becomes:

A=2, :-m’—@cﬁ (h=0,12-), 9)
where
7(s) = T(s)+ 2n(s) (10)

and 7(5) must be negative.

Bound State Solutions via Nikiforov-Uvarov
(NU) Method

The potential in equation (1) is substituted
into the radial Schrodinger equation given as:

[_ﬁﬂ[rzdi]+w+v(r)]w(r> Ene(1Ry/ (1) (12)

urtd 2ur

where n denotes the radial quantum num-

ber which together with ¢ are both named as the
vibration-rotation quantum numbers in molecular

chemistry, r is the internuclear separation, Ens is
the exact bound state energy eigenvalues and V(r)
is the internuclear potential energy function and
we obtain:

PRul), 28 o(0), zu[ m+%+%e—2b +abe-2 _/(f+12)h2]Rm(r):0l (12)

T 42 1 d "2 2ur

Equation (12) can be rearranged to give:

4-%32(’1”(r)+l “|:(E +abe” z”)’ (a+a 2“)( Hl}h] r)=0. (13)

1% p?

Introducing the following dimensional pa-
rameters:
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g? =;—L2l[EM +abe~2P ] (14)
—B:i—gaﬂa *Zb] (15)
y=0(0+1) (16)

equation (13) is written as:

d°Ryy (r ) 2R n[( )
a2 r

Sk -pr-rRut)=0. (7)

A comparison of equations (2) and (17) re-
veals the following polynomials:
(r)=2, olr)=r, 5(r)=e2?-pr-y (18)

Substituting these polynomials into equa-
tion (7), we get () as:

=——+ \/ 4e%r% 4 A(K+B)r + 4y +1 (19)
and o) is taken equal to 1. The discri-
minant of the expression under the square root in

equation (19) has to be zero for it to have equal
roots. Therefore, we get:

[4(k +B)P - 4(— 4¢? )(4y +1)=0, (20)

On solving equation (20) for k we get:

ke =—Ptieydy+1, (21)

where

k. =—B—ieydy+1 (22)

and

K, = —B+ieJay+1. (23)
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Substituting K: into equation (19), gives
the following four possible solutions obtained for

n(r) as:

1i isr—% 4y+1, for k_ =-B-igy/dy+1 (24)
2 ier+% 4y+1, for k, = —B+igydy+1.

From the four possible forms of n(r) in
equation (24), we select the one for which the

function ) in equation (10) has a negative de-
rivative. () satisfies these requirements with:

©(r)=1-2ier +4/4y+1 (25)
and
7(r)=-2ie <0 (26)

From equation (8), we obtain:

A=—P—ieyJdy+1—ie (@7)

and also
A=A, =2he, n=0123 (28)

We then obtain the parameters €2 as:

2
. :[——B] _ (29)
1+2n +4/4y+1

Substituting the values of €2, B and Y
from equations (14) — (16) into equatlon (29),
yields:

-2b
oL 2

[ at+a :|2 (30)
B2 | (L+2n)+Ja[e(e+1)]+1

Ev = —abe ™2

To find y(r), we first obtain p(r) from equa-
tion (6) as:
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L3yt 2ier (31)

p(r)=r e

Substituting this into the Rodrigues rela-
tion given in equation (5), we get:

(r)_ B r—(1+ 4y+1)ezisri r(n+l+ 4y+1)e—2isr (32)
Ynell)= By gn

B/ is the normalization constant. The
polynomial solutions of Yor(r) in equation (32)
are expressed in terms of the associated Laguerre
polynomials, which is one of the orthogonal poly-
nomials. We write:

Yo (1) = (), 53

where V = 2ier, therefore,

= (2ie) v (34)

By substituting (1) and o(r) into the ex-
pression '(r)/o(r)=n(r)/a(r) and solving the re-
sulting differential equation, the other part of the
wave function in equation (3) is obtained as:

¢(r) — r%\/m—%e—isr (35)

or in terms of v,

o(v) = (2ie) 3y ] (36)

Combining the Laguerre polynomials and
0(v) in equation (3), enables the radial wave func-
tion to be constructed as:

Rn/,(r) = An/,‘lfn/,(r) (37)
Ry )= Ay (i) T L) (38)

1
If we introduce the variable 0‘:5\/4Y+1,
equation (38) becomes:

Ry (1) = Ay (2ie) 370y % 3120 (y) (39)
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To find Ane , a new normalization constant,
we write:

JRﬁ((r)d -1, (40)
0
Therefore,
A (2iefo2 vaatgv[zoen)Py —1 (41)
0

The above integral can be evaluated by us-
ing the recursion relation for Laguerre polynomi-

als and Ane is found to be:

=20+ 1pief2 1
Fine _[ (2n— 20+ 2)(n1P } “

Therefore, Rne(r) becomes:

" (n - 200+1)1(2ie > g e i ey,
| I i @

Conclusion

The analytical solutions of the Schréding-
er equation for the general exponential screened
coulomb potential has been presented. The Niki-
forov-Uvarov method employed in the solutions
enables us to explore an effective way of obtain-
ing the eigenvalues and corresponding eigenfunc-
tions of the Schrddinger equation for any ¢ - state.

Finally, we calculate the energies of the ex-
ponential screened coulomb potential for diatomic

molecules by means of equation (30) for the ¢
- state. The explicit values of the energy at dif-
ferent values of the screened parameter are shown
in Table 1.

Table 1. Bound State Eigenvalues for 0<b<0.6
for the 1s State of Diatomic Molecules in Atomic

Units (h=p=a=1)
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b E.(ev)
N> CO NO
0.01 0.2348302 0.2346764 0.2345716
0.02 0.2202668 0.2199730 0.2197791
0.03 0.2062752 0.2058684 0.2056002
0.04 0.1928410 0.1932419 0.1920133
0.05 0.1799455 0.17937370 0.1789975

Note: The r values for N2 (1.0940), CO (1.21282) and NO (1.1508) were adapted from M. Karplus and
R. N. Porter, Atoms and Molecules: An Introduction for Student’s of Physical Chemistry, Benjamin,

Menlo Park, CA, 1970.
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