INVESTIGAÇÕES SOBRE O ACÚMULO ENDOMICELAR DE FÓSFORO PELO Streptomyces aureofaciens EM MEIO QUIMICAMENTE DEFINIDOS.

S. HILST RIBEIRO*
R. MOLINARI**

RESUMO: Foram estudadas as condições que levam o Streptomyces aureofaciens a acumular fósforo endomícelar em meios de cultivo quimicamente definidos. A principal variável condicionadora do processo é a limitação de disponibilidade de nitrogênio assimilável nos meios.

UNITERMOS: Polifosfato microbiano; Streptomyces aureofaciens.

INTRODUÇÃO

Fosfato polimerizado acumula-se em espécie microbianas, na forma de grânulos metacrômáticos (volutina), tanto em microrganismos aeróblicos como anaeróbicos, possivelmente envolvendo reação de transferência reversível entre o polimero inorgânico e trifosfato de adenosina (ATP) e em condições de cultivo não satisfatoriamente elucidadas (1).

A presença de polifosfato foi detectada em bactérias, algas, levaduras e fungos (2). Na bactéria filamentosa Streptomyces aureofaciens a função do fosfato polimérico foi relacionada à produção de clortraciclina (3).

Supõe-se que as funções dos grânulos de fosfato polimérico sejam a de reserva de energia (1) e de reserva de fosfato (4).

O objetivo deste trabalho foi investigar relações entre nutrientes e condições que levam linhagem não produtora de traciclina do S. aureofaciens ao acúmulo endomícelar de fosfato, em meios de cultura quimicamente definidos.

MATERIAIS E MÉTODOS

Microorganismo — Streptomyces aureofaciens, linhagem NRRAL — 1286

Índucllos — Constituídos por culturas de microrganismo, crescidos por 40 horas, em meio, quimicamente definido, de composição: Sacarose 50,0 g/l; (NH₄)₂SO₄ 0,030M; K₂HPO₄ 0,0075M; CaCO₃ 4,0 g/l; MgSO₄·7H₂O 0,20g/l; FeSO₄·7H₂O 0,010 g/l; ZnSO₄·7H₂O 0,010 g/l; MnSO₄·H₂O 0,010 g/l e CoSO₄·7H₂O 0,005g/l (•), nas condições especificadas, abaixo, em técnica de cultura.

Após o crescimento a cultura é homogeneizada, em condições assépticas, em liquidificador de copo de alumínio, transferida, em porções de 30 ml, para frascos

* Resposta da FAPESP.
** Professor Titular de Bioquímica junto ao Departamento de Química Tecnológica e de Aplicação do Instituto de Química de Araraquara, UNESP.
(*) Estes últimos cinco componentes minerais serão denominados “Minerais menores” e referidos, com esse nome e nas concentrações de meio de índice, nos demais meios do trabalho.
Fracionamento de micélio em frações sub-celulares — Micélia, lavado com HC1 0,05N e água destilada, analogamente ao descrito na lavagem de micélia para massa seca, foi desintegrado, por moagem mecânica em almoço de porcelana, resfriado a 20°C, de maneira a se utilizar a própria massa congelada como abrasivo. Logo após a fusão do gelo o processo foi repetido mais duas vezes. A massa desintegrada foi suspensa em água e fracionada por centrifugação a 20.000 x g por 30 minutos, em "extrato micelar solúvel" e "resíduo". Parte do extrato solúvel foi precipitado pela adição de ácido tricloroacético a 0,92M e separado por centrifugação, em: "extrato desproteinizado" e "resíduos desproteinizados". O contrário do "extrato micelar", o "desproteinizado" não apresentou absorbância optica em 260 e 280 nm. Todas as frações foram referidas, para análise, ao seu conteúdo original de micélio seco.

Dosagens de fósforo — As dosagens de fósforo total em micélio integral foram realizadas em micélíô lavado com HC104 0,05N e água, analogamente ao descrito no preparo de micélia para massa seca. Aliquotas convenientes, de suspensão do mesmo em água, foram submetidas ao processo de digestão com ácido sulfúrico e água oxigenada, conforme descrito na referência (5) e tiveram seu conteúdo de fósforo dosado pelo método de Fiske e Subbarow, descrito na referência (6). As frações do item anterior foram igualmente digeridas e dosadas em seus teores de fósforo total. Os resultados foram expresos em microgramas de fósforo por milímetro da cultura original, no primeiro caso ou em termos da razão miligramas de fósforo por grama de micélio seco, calculados, em ambos os casos.

RESULTADOS E DISCUSSÃO

A tabela 1 contém os resultados de crescimento do S. aureofaciens e dos teores de fósforo micelar em vários meios de cultura, obtidos ao se procurar uma precipitação de fosfato.

Tabela 1: Crescimento do S. aureofaciens e acúmulo endêmico de fósforo em meios úmicos e químicamente definidos.

TABELA 1 — Crescimento do S. aureofaciens e acúmulo endêmico de fósforo em meios úmicos e químicamente definidos.

<table>
<thead>
<tr>
<th>COMPONENTES (°)</th>
<th>MEIOS</th>
<th>MC1</th>
<th>MC2</th>
<th>MC3</th>
<th>MC4</th>
<th>MD1</th>
<th>MD2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sacarose (g/l)</td>
<td>50,0</td>
<td>50,0</td>
<td>50,0</td>
<td>50,0</td>
<td>50,0</td>
<td>50,0</td>
<td>50,0</td>
</tr>
<tr>
<td>(NH4)2SO4 (M x 10^-3)</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
</tr>
<tr>
<td>Extr. de levedo (g/l)</td>
<td>5,0</td>
<td>5,0</td>
<td>5,0</td>
<td>5,0</td>
<td>5,0</td>
<td>5,0</td>
<td>5,0</td>
</tr>
<tr>
<td>K2HPO4 (M x 10^-3)</td>
<td>5,0</td>
<td>5,0</td>
<td>5,0</td>
<td>5,0</td>
<td>5,0</td>
<td>5,0</td>
<td>5,0</td>
</tr>
<tr>
<td>C6H12O6 (M x 10^-3)</td>
<td>2,0</td>
<td>2,0</td>
<td>2,0</td>
<td>2,0</td>
<td>2,0</td>
<td>2,0</td>
<td>2,0</td>
</tr>
<tr>
<td>CRESCENTE (40h) (mg/ml)</td>
<td>6,4</td>
<td>6,4</td>
<td>6,4</td>
<td>6,4</td>
<td>6,4</td>
<td>6,4</td>
<td>6,4</td>
</tr>
<tr>
<td>FOSFORO TOTAL (µg/ml)</td>
<td>144</td>
<td>144</td>
<td>144</td>
<td>144</td>
<td>144</td>
<td>144</td>
<td>144</td>
</tr>
<tr>
<td>RAZÃO P/Massa (mg/ml)</td>
<td>21,4</td>
<td>21,4</td>
<td>21,4</td>
<td>21,4</td>
<td>21,4</td>
<td>21,4</td>
<td>21,4</td>
</tr>
</tbody>
</table>

(°) — Além dos componentes indicados todos os meios contêm "minerais menores", como definido em materiais e métodos.

Observa-se que o S. aureofaciens pode acumular, nos meios investigados, de 1,7 a 4,5% de fósforo total em sua massa micelar. O exame histoquímico das hifas de micélia, obtidas com os meios MC1 e MC2 por técnica de coloração específica para grânulos metacromáticos (7), mostrou a ocorrência de volutina em ambas, com nítida presença qualitativa mais intensa para o micélio crescido no meio MC2. A presença de sulfato de amônio, nos meios com extrato de levedo, reduz o fósforo acumulado, enquanto que, em todos os tipos de meios, o aumento do fósforo inorgânico oferecido não interfere no acúmulo endêmico do elemento.

A Tabela 2 mostra a distribuição da razão Fósforo/Massa micelar em frações obtidas de micélia, contendo teores variáveis de fósforo total, obtidos de três meios descritos na tabela anterior.

Tabela 2: Distribuição do fósforo total nas frações de micélios derivados dos meios MC1, MC2 e MC4.

<table>
<thead>
<tr>
<th>FRAÇÕES</th>
<th>MICELIOS</th>
<th>MC1</th>
<th>MC2</th>
<th>MC4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fósforo (mg/g)</td>
<td>%</td>
<td>Fósforo</td>
<td>%</td>
<td>Fósforo</td>
</tr>
<tr>
<td>Micelio integral</td>
<td>36,8</td>
<td>100</td>
<td>36,8</td>
<td>100</td>
</tr>
<tr>
<td>Resíduo do extrator</td>
<td>23,9</td>
<td>83</td>
<td>23,9</td>
<td>83</td>
</tr>
<tr>
<td>Resíduo do extrator</td>
<td>12,0</td>
<td>55</td>
<td>12,0</td>
<td>55</td>
</tr>
<tr>
<td>Micelio micelar</td>
<td>44,5</td>
<td>100</td>
<td>44,5</td>
<td>100</td>
</tr>
<tr>
<td>Extrato desproteinizado</td>
<td>36,8</td>
<td>65</td>
<td>36,8</td>
<td>65</td>
</tr>
<tr>
<td>Resíduo da desproteinização</td>
<td>4,6</td>
<td>33</td>
<td>4,6</td>
<td>33</td>
</tr>
</tbody>
</table>

Nota-se uma desigual distribuição da relação entre extrato solúvel e resíduo em três amostras de micélio. Quanto mais rico o micélio, maior é a proporção de fósforo solúvel e menor a de fósforo insoluível. É possível que nos micélio mais ricos seja maior a proporção de fosfatos de baixa polimerização. A análise da distribuição desse material entre a fração livre de proteínas e o resíduo da desproteinização, tanto no caso do micélio mais rico, como no mais pobre, mostrou que 60 a 65% do fósforo, ali presente, está em ácido tricloroacético 0,92M, provavelmente, de baixa polimerização e, seguramente, distinto de ácidos nucleicos.
A Tabela IV mostra a correlação inverte entre a concentração inicial de nitrogênio e o crescimento da microbiota. No entanto, a importância da presença de nitrato microbiano, encontrada no meio MDS, varia entre os diferentes ambientes químicos determinados.

<table>
<thead>
<tr>
<th>COMPONENTES</th>
<th>MÉDIA</th>
<th>D50</th>
<th>D10</th>
<th>D90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrato</td>
<td>50,0</td>
<td>50,0</td>
<td>50,0</td>
<td>50,0</td>
</tr>
<tr>
<td>Amônia</td>
<td>50,0</td>
<td>50,0</td>
<td>50,0</td>
<td>50,0</td>
</tr>
<tr>
<td>Crescimento</td>
<td>4,5</td>
<td>4,5</td>
<td>4,5</td>
<td>4,5</td>
</tr>
</tbody>
</table>

A Tabela V apresenta os resultados da avaliação do acúmulo de fósforo total no meio MDS.

<table>
<thead>
<tr>
<th>TEMPO (h)</th>
<th>Crescimento</th>
<th>FOSFORO TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1,5</td>
<td>4,5</td>
</tr>
<tr>
<td>2</td>
<td>1,5</td>
<td>4,5</td>
</tr>
</tbody>
</table>

Os resultados mostram que o acúmulo de fósforo total é direto e proporcional ao tempo de crescimento. No entanto, a relação precisa entre o crescimento e o acúmulo de fósforo ainda é objeto de estudo.

Finalmente, na Tabela VI, são apresentados os resultados da análise da fosfatosálica sob a influência do meio MDS.

<table>
<thead>
<tr>
<th>RAZÃO (mg/l)</th>
<th>CRESCIMENTO</th>
<th>FOSFORO TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,5</td>
<td>4,5</td>
</tr>
<tr>
<td>2</td>
<td>1,5</td>
<td>4,5</td>
</tr>
</tbody>
</table>

Os resultados indicam uma correlação direta entre a razão de crescimento e o acúmulo de fósforo total, sugerindo a importância do equilíbrio entre microorganismos e nutrientes no meio de crescimento.

O fluoreto, um composto utilizado para a adição de ácidos na fase de crescimento, tem mostrado resultados promissores na redução do acúmulo de fósforo total.

Em função dos resultados obtidos, a investigação continua para a otimização do meio MDS e a influência de vários compostos de fosfatosálica, com o intuito de obter um meio mais eficaz na redução do acúmulo de fósforo.

Os meios de crescimento, como o meio MDS, têm sido utilizados para a investigação do crescimento de microorganismos de diferentes ambientes, o que permite uma melhor compreensão da ecologia microbiana e a possibilidade de desenvolvimento de novas estratégias de controle de enriquecimento de nutrientes.

Em conclusão, os resultados obtidos permitem a inferência de uma correlação direta entre a fase de crescimento e o acúmulo de fósforo, o que sugere a importância de um equilíbrio adequado entre microorganismos e nutrientes no meio de crescimento.

O trabalho contém uma discussão detalhada sobre os resultados, fornecendo uma visão clara dos possíveis impactos e possíveis aplicações futuras.
TABELA VI — Efeito de inibidores metabólicos sobre o acúmulo de fósforo pelo *S. aureofaciens* no meio quimicamente definido MD3.

<table>
<thead>
<tr>
<th>TEMPO (h)</th>
<th>Inibidor adicionado às 24 horas</th>
<th>Crescimento (mg/ml)</th>
<th>FÓSFORO TOTAL (µg/ml; mg/g; %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>—</td>
<td>1.3</td>
<td>34 26 —</td>
</tr>
<tr>
<td>72</td>
<td>NaF 0,050M</td>
<td>1.6</td>
<td>51 32 100</td>
</tr>
<tr>
<td>72</td>
<td>NaN3 0,010M</td>
<td>1.9</td>
<td>82 43 134</td>
</tr>
<tr>
<td>72</td>
<td>Clorafenicol 10 µg/ml</td>
<td>1.4</td>
<td>35 25 78</td>
</tr>
<tr>
<td>72</td>
<td></td>
<td>1.4</td>
<td>53 38 119</td>
</tr>
</tbody>
</table>

dor, menos específico, de todos os processos metabólicos que dependem de magnésio, é de efeito surpreendente tanto sobre o crescimento do microorganismo quanto sobre o acúmulo de fosfato, ativando-os. O crescimento é estimulado em cerca de 19% e o acúmulo em aproximadamente 34%. Essa ação é de difícil interpretação, embora tenha sido confirmada com o meio MD3, mais rico em sulfato de amônio, quando os mesmos estimulos foram observados. O clorafenicol, inibidor da biossíntese protéica (9), reduz o crescimento a, praticamente, o mesmo nível de 24 horas enquanto estimula a fixação de fósforo em cerca de 19%. Essa ação é condizente com a hipótese formulada ao se interpretar os dados da Tabela III, de que o nitrogênio limitante, condicionador de maior acúmulo de fósforo endomicelar, agiria desviando o potencial energético do microorganismo das biossínteses de macromoléculas nitrogenadas para a fixação do ATP em polifosfato, tipicamente, uma reserva energética.

AGRADECIMENTO:
Um dos autores (SHR) agradece à Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) pela concessão de uma Bolsa (Processo 16-Química 78/1328) que permitiu-lhe a participação no trabalho relatado.

ABSTRACT: Cultivation conditions and chemically defined media for endomycelial accumulation of phosphorus by *Streptomyces aureofaciens* have been investigated and established. The main conditioning factor is the limitation of the nitrogen sources in the media.

KEY-WORDS: Microbial polyphosphate; *Streptomyces aureofaciens*.

REFERÊNCIAS BIBLIOGRÁFICAS