RECUPERAÇÃO DE PLATINA DE RESÍDUOS CONTENDO TRIFENILFOSFINA, TRIFENILARSINA E TRIFENILESTIBINA

Roberto Santos BARBIÉRI*
Julio Cesar ROCHA*
Antonio Carlos MASSABNI**
Carlos Roberto BELATTO***

RESUMO: O presente artigo descreve um método para recuperação de platina, através de digestão por via seca de matéria contendo várias impurezas, incluindo-se trifenilfosfina, trifenilarsina e trifenilestibina. Após mineralização com uma mistura de ácidos nitriloácido e ácido, a platina é precipitada com cloreto de amônio na forma de hexachloroplátnato de amônio. Resultados de análise gravimétrica mostram que o produto obtido é puro.

UNITERMOS: Recuperação de platina; recuperação de metais preciosos; hexachloroplátnato de amônio; digestão via seca.

INTRODUÇÃO

As amplas aplicações da platina em catálise, na fabricação de cadinhos e eletrodos para uso em laboratório, em dentística e medicina, em ligas metálicas e joalheria, por exemplo, aliadas à sua baixa ocorrência na crosta terrestre e ao seu grande valor intrínseco, tornam necessária, sempre que possível, a sua reciclagem. A literatura relativa
à recuperação de platina frequentemente faz referência a processos envolvendo a separação deste metal dos outros de seu grupo (Ru, Rh, Pd, Os e Ir) em ligas diversas, amostras de exploração geoquímica e resíduos electrofísicos, dentre outros.

O presente artigo descreve a recuperação de platina em resíduos contendo trifenilfosfina, trifenilarssina e trifenilestibina. O método envolve a digestão da amostra por via seca, seguida de ataque ácido e precipitação do metal na forma de hexacloroplátonato de amônio.

PARTE EXPERIMENTAL

a. Amostra

A amostra consiste de resíduos de reações de síntese de complexos de platina dos tipos \([\text{PtX}_2\text{L}_2]\) (I) e \([\text{PtL}_n]\) (II) \((X = Cl, Br; L = \text{PPh}_3, \text{AsPh}_3, \text{SbPh}_3; n = 2, 3, 4)\). A preparação de tais complexos requer a presença de excesso de ligante e, no caso de II, também o emprego de \(\text{NaBH}_4\) como agente redutor. Aos resíduos são juntados os materiais provenientes dos estudos de reatividade desses complexos.

b. Reagentes

Ácidos clorídrico/hútrico concentrados e solução saturada de cloreto de amônio.

c. Material

Mufa Thermolyne modelo F-B1315M 25-1000°C e aquecedor Prodigil modelo 01.

Procedimento

Pulveriza-se a amostra, coloca-se em cápsula de porcelana e digere-se em mufa à temperatura de 1000°C. O aquecimento deve ser lento e gradativo, com a mufa mantida em capela de boa exaustão. Nesta fase, desprendem-se gases extremamente tóxicos contendo derivados de fósforo, arsênio e antimônio. Terminada a digestão, transfere-se o material para béquer de forma alta com auxílio de uma mistura de ácidos nitrício e clorídrico concentrados (água-régia). Aquece-se à ebulação com reposição de ácido clorídrico até cessar o desprendimento de vapores de \(\text{NO}_2\) e solubilizar parte do material.

Diminui-se o aquecimento e leva-se à secura para deixar compostos de platina eventualmente formados durante a digestão. Adiciona-se ácido clorídrico concentrado (a quente) e filtra-se em fumil com placas de vidro sintetizado de porosidade 4. O filtrado contém ácido hexacloroplátonico. Com o material ainda não solubilizado, retém-se o ataque com água-régia, secagem, adição de ácido clorídrico e filtração até o filtrado não mais apresentar coloração amarela, típica do ácido hexacloroplátonico. Se necessário, concentre-se a combinação de filtrados através de aquecimento em banho-maria. Adiciona-se lentamente, e sob agitação constante, solução saturada de cloreto de amônio para precipitar o hexacloroplátonato de amônio \((\text{NH}_4)_2[\text{PtCl}_6]\) de coloração amarelo-ocre. A precipitação deve ser feita em meio de ácido clorídrico para evitar a precipitação simultânea de cloretos de antimoníaco. Deixa-se em repouso durante uma noite, filtra-se em fumil com placas de vidro sintetizado e lava-se o precipitado com etanol anidro. O produto obtido foi analisado gravimetricamente através de calcinação lenta até 600°C, em cápsula de platina, utilizando-se massa de cerca de 0,1 g (em triplicata).

RESULTADOS E DISCUSSÃO

Tentativas preliminares mostraram que o ataque da amostra descrita por via úmida (ataque por ácidos sulfúrico, nitrício e perclórico concentrados e peróxido de hidrogênio 120 volumes) é desaconselhável tendo em vista o longo tempo de digestão e o alto consumo de reagentes e de energia elétrica. Assim, devido às características da matriz utilizada optou-se pela digestão por via seca, pois além de se processar em menos tempo, com menor custo, possibilita a eliminação de fósforo, arsênio e antimônio na forma de compostos voláteis.

O teor médio de platina encontrado na determinação gravimétrica caracteriza uma pureza de 100% para o \((\text{NH}_4)_2[\text{PtCl}_6]\) obtido. Além disso, a viabilidade da sua utilização na síntese de compostos do tipo I e II foi verificada na preparação de \([\text{PtCl}_3(\text{PPh}_3)_2]\) e \([\text{Pt}(\text{PPh}_3)_4]\). Comparações de pontos de fusão e espectros de infravermelho destes compostos com aqueles preparados a partir de reagentes disponíveis no mercado (ácido hexacloroplátonico e seu sal de sódio) não apresentaram diferenças.

A reciclagem de platina, nesse tipo de amostra, tem contribuído para diminuir o custo e viabilizar a continuidade do projeto de síntese, caracterização, reatividade e aplicação em catálise de complexos de platina com fosfinas, arsenias e estibinas em desenvolvimento pelos autores, no Instituto de Química da UNESP.
AGRADECIMENTOS

Ao CNPq, FAPESP, COPENE S.A. pelo suporte financeiro. Ao Sr. Ademir dos Santos, funcionário do IQ-UNESP, pela contribuição na parte experimental.

ABSTRACT: The present paper describes a method for platinum recuperation via dry ashing of a matrix which contains several impurities including triphenylphosphine, triphenylarsine and triphenylstibine. After mineralization with a mixture of nitric/hydrochloric acids, platinum is precipitated with ammonium chloride as ammonium hexachloroplatinate. Gravimetric analysis results show that the product is pure.

KEY-WORDS: Platinum recuperation; precious metal recuperation; ammonium hexachloroplatinate; dry ashing.

REFERÊNCIAS BIBLIOGRÁFICAS

Recebido em 06/06/88