COMPLEXES OF LEAD(II) PERCHLORATE AND HEXAFLUOROPHOSPHATE WITH AROMATIC AMINE N-OXIDES

Glaico CHIERICATO JÚNIOR*
Wagner FERRARESI DE GIOVANI*
Luiz Carlos GARLA*
Virginia Helena BETARELLO*

ABSTRACT: The syntheses of adducts of lead perchlorate and lead hexafluorophosphate with aromatic amine N-oxides are reported. The analytical data are consistent with the following formulas: Pb(ClO$_4$)$_2$·2(2-picNO), Pb(ClO$_4$)$_2$·2(3-picNO), Pb(ClO$_4$)$_2$·2(4-picNO), Pb(ClO$_4$)$_2$·4(4-OMepyNO), Pb(ClO$_4$)$_2$·5(4-NO$_2$pyNO), Pb(ClO$_4$)$_2$·6(4-CpyNO), Pb(ClO$_4$)$_2$·6(pyNO), Pb(PF$_6$)$_2$·5(2-picNO), Pb(PF$_6$)$_2$·5(3-picNO), Pb(PF$_6$)$_2$·5(4-picNO). The compounds were characterized by conductance in acetonitrile and nitromethane and by infrared spectroscopy. The infrared data suggest coordination of the perchlorate ion for 2-, 3- and 4-picNO and for 4-OMepyNO complexes.

KEY-WORDS: Lead; coordinated perchlorate; aromatic amine N-oxide; complexes.

INTRODUCTION

Amine N-oxides act as electron-pair donors, forming molecular adducts and complexes with a variety of acceptor molecules, such as metal salts and complexes, halogens and organic compounds. The systematic synthetic and characterization studies of metal complexes of aromatic amine N-oxides were initiated in 1961 and since then a large number of publications have appeared in the literature. Three reviews covering the subject were published. Although several detailed reports concerning complexes of aromatic amine N-oxides with transition metals have appeared, few work has been done involving these ligands and lead(II) ions.
In this paper we report the adducts of lead perchlorate and hexafluorophosphate with 2-picoline - N-oxide (2-picNO), 3-picoline - N-oxide (3-picNO), 4-picoline - N-oxide (4-picNO), 4-methoxy pyridine - N-oxide (4-MepyNO), 4-chloropyridine-N-oxide (4-CpyNO), 4-nitropyridine-N-oxide (4-NO2pyNO) and pyridine-N-oxide (pyNO).

The compounds were characterized by elemental analysis, infrared spectroscopy and electrolytic molar conductance in acetonitrile and nitromethane. Considerations about coordination of perchlorate ions to the lead ion are presented.

EXPERIMENTAL

Materials

2-picoline - N-oxide (Schuchardt) and 4-picoline - N-oxide (Fluka) were recrystallized from acetone; 3-picoline - N-oxide (Aldrich) was distilled under vacuum; 4-methoxy pyridine-N-oxide was recrystallized from petroleum ether; pyridine-N-oxide and 4-nitropyridine-N-oxide were prepared and purified by the OCHTAD® method, and 4-chloropyridine-N-oxide was prepared by the method of HERTOG & COMBE®. Lead perchlorate was obtained by dissolution of a slight excess of lead carbonate in perchloric acid followed by filtration, concentration of the solution on a steam bath, crystallization and drying in vacuo over anhydrous calcium chloride. Ammonium hexafluorophosphate was purchased from Alpha. Other chemicals and solvents were always of analytical grade.

Preparation of the adducts

Adducts of lead perchlorate

The adducts were prepared by direct interaction of solutions of lead perchlorate and an excess of the ligands in absolute ethanol for 2-picNO, 4-picNO, 4-CpyNO and 4-NO2pyNO. Methanol and acetone were used as solvents for the preparation of the adducts of 4-NO2pyNO and pyNO, respectively. Warmed solutions of salt and ligand in ethanol: triethyl orthoformate (1:1) were used to obtain the 3-picNO adduct. The solid compounds were filtered, washed with the corresponding solvent and dried in vacuo over anhydrous calcium chloride.

Adducts of lead hexafluorophosphate

A concentrated aqueous solution of hexafluorophosphate® aqueous solution, was diluted with absolute ethanol and treated with an ethanolic solution of 4-picNO or 3-picNO (molar ratio 1:10); with 2-picNO isopropanol was used as solvent. The precipitates were collected by filtration, washed with small portions of the corresponding alcohol and dried in vacuo over anhydrous calcium chloride.

Analytical procedure

Lead ion was determined by complexometric titration with EDTA®. Carbon and hydrogen were determined by microanalytical procedures. The absence of water was verified by infrared spectroscopy.

Measurements

Conductance measurements were made at 25.0±0.1°C using a Metrohm Konduktskosp E 365B and Metrohm cells (Kc=11.8 cm⁻¹ and 6.15 cm⁻¹). Infrared spectra were obtained in a Perkin-Elmer model 467 spectrophotometer using mull plates, between KBr plates. Melting ranges were determined in a Fisher-Johns melting point apparatus.

RESULTS AND DISCUSSION

The analytical results and melting ranges are summarized in Table 1. Some adducts melt with decomposition. They are soluble in acetonitrile, nitromethane, water and practically insoluble in acetone and methanol.

The electrolytic molar conductance data in acetonitrile and nitromethane are shown in Table 2. All the adducts behave as 1:2 electrolytes in these solvents according to GEARY®.

Infrared data are found in Table 3 and Figure 1 shows the infrared spectra of some compounds. The following aspects may be considered regarding the infrared data:

a) There are shifts in N-O (vNO) stretching frequency for the complexed ligands to lower frequencies, in relation to the free ligands. These shifts are attributed to the coordination of aromatic amine-N-oxide to the metal through the oxygen atom, corresponding to an electron density decrease in the N-O bond of the ligands. Absorptions in the range 870-840 cm⁻¹ have been assigned to an NO bending (bNO) mode and are practically unaltered for most of the compounds, unless for a positive shift in the lead complex of 3-picNO. In the hexafluorophosphates complexes these bands are in the ν3 frequencies region of the ionic hexafluorophosphate and therefore cannot be observed. Attempts to find correlations between the ν3 frequencies shifts of the complexes with νO2pyNO values of the ligands were not successful.

b) The free perchlorate ion belongs to the point group T₃₄ and only ν₁ (~1080 - 1110 cm⁻¹) and ν₂ (~626 cm⁻¹) modes of vibration are expected to be infrared active. If the ion is coordinated to a metal, the symmetry is lowered and split levels of the degenerated modes occur (ν₁ and ν₂ are split in two or three bands corresponding to the coordination of one (C₁₄) or two (C₂₄) oxygen atoms). The ν₁ (~932 cm⁻¹) and ν₂ (460 cm⁻¹) modes corresponding to Raman active bands in the free ion are supposed to be infrared active upon coordination of perchlorate ion. The lead

<table>
<thead>
<tr>
<th>COMPOUNDS</th>
<th>Acetonitrile</th>
<th>Nitromethane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb(C(10)₂₂₉₂-2-picNO)</td>
<td>0.945</td>
<td>0.993</td>
</tr>
<tr>
<td>Pb(C(10)₂₂₉₂₂₃₂-3-picNO)</td>
<td>1.02</td>
<td>0.961</td>
</tr>
<tr>
<td>Pb(C(10)₂₂₉₂₂₂₉₄₄-4-picNO)</td>
<td>0.945</td>
<td>0.936</td>
</tr>
<tr>
<td>Pb(C(10)₂₂₉₂₂₄₄-4-OMepyNO)</td>
<td>0.982</td>
<td>0.993</td>
</tr>
<tr>
<td>Pb(C(10)₂₂₉₂₂₅₄-NO₂pyNO)</td>
<td>0.985</td>
<td>0.994</td>
</tr>
<tr>
<td>Pb(C(10)₂₂₉₂₂₆₄-ClpyNO)</td>
<td>1.04</td>
<td>0.972</td>
</tr>
<tr>
<td>Pb(C(10)₂₂₉₂₂₇₄pyNO)</td>
<td>1.12</td>
<td>287</td>
</tr>
<tr>
<td>Pb(PF₆)₂₂₉₂₂₇₂-2-picNO)</td>
<td>0.978</td>
<td>320</td>
</tr>
<tr>
<td>Pb(PF₆)₂₂₉₂₂₃₃-3-picNO)</td>
<td>1.03</td>
<td>288</td>
</tr>
<tr>
<td>Pb(PF₆)₂₂₉₂₂₄₄-4-picNO)</td>
<td>1.03</td>
<td>304</td>
</tr>
</tbody>
</table>

$\Lambda_M = \text{cm}^2 \cdot \text{mol}^{-1} \cdot \text{cm}^{-1}$

In nitromethane these compounds are only slight solubles and the needed millimolar concentration was not attained.

Perchlorate complexes with 2-, 3- and 4-picNO show bands of medium intensity around 920 cm⁻¹ corresponding to the v_1 mode of coordinated perchlorate. The v_2 mode is split in two or three broad bands but the presence of the free ligand bands in this region precludes their analysis. The v_4 mode is undoubtedly split in three bands for 2- and 3-picNO and in two bands for 4-picNO complexes. These splittings seem to be unequivocal for coordinated perchlorate ion. In the region of the v_2 mode, due to the occurrence of some free ligand bands, it is difficult to assign the bands to the perchlorate ion. Data plus the stoichiometries of the compounds are consistent with the coordination of the perchlorate ion to the metal ion in those complexes. For the 4-NO₂pyNO and 4-OMepyNO complexes the v_1 mode appears with weak intensity. For the 4-NO₂pyNO the v_3 mode is split in three bands and the v_4 mode in two bands. For 4-OMepyNO the v_2 is split in two bands and v_4 is not split. Again the stoichiometries and the infrared data suggest a coordination for the perchlorate ion, although not so evident as for the picNO complexes.

c) For the complexes with the hexafluorophosphate ion only single bands corresponding to v_3 (~830 cm⁻¹) and v_4 (~555 cm⁻¹) modes of the non-coordinated ion were observed. The two bands at 746 cm⁻¹ and 737 cm⁻¹ of medium intensity, corresponding to the v_1 mode in 2-picNO complexes, look more like a crystal perturbation than a possible coordination.

A comparison of the stoichiometries and infrared data for the lead hexafluorophosphate and perchlorate with the aromatic amine oxide may suggest that...
Fig. 1 – Infrared Spectra of: a) 2-picNO; b) Pb(C10)2·2(2-picNO); c) Pb(PP)2·2(2-picNO).

There is a strong evidence for coordination of perchlorate ion in the corresponding complexes of 2-, 3- and 4-picNO and a not so intense, but still evident, partial coordination in 4-OMepyNO and 4-NO2pyNO complexes. A decision between a mono or a bidentate perchlorate ion is very difficult based on infrared data only and we prefer not to advance an answer for this question.

Some complexes, with different stoichiometries from the presented in this paper, were obtained during the course of our work by varying the solvents and the preparation conditions.

The results related suggest that the coordination of the perchlorate ion, in relation to the lead ion, could be changed by changing the solvent used in the preparations and that both perchlorate ion and the aromatic amine oxides employed compete for the coordination to the lead ion.

ACKNOWLEDGEMENT

The authors (G.C.J. and L.C.G) wish to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Brasil for a Research Fellowship.

RESUMO: Descreve-se a síntese de adutos de perlorato de chumbo e hexafluorofosfato de chumbo com aminoácidos aromáticos. Os resultados analíticos são compatíveis com as seguintes fórmulas: Pb(C10H2)2 . 2 (2-picNO), Pb(C10H2)2 . 2 (3-picNO), Pb(C10H2)2 . 2 (4-picNO), Pb(C10H2)2 . 4 (4-OMePyNO), Pb(C10H2)2 . 5 (4-NO2PyNO), Pb(C10H2)2 . 6 (4-CipPyNO), Pb(C10H2)2 . 6 (PyNO), Pb(PF3)2 . 5 (2-picNO), Pb (PF3)2 . 5 (3-picNO), Pb(PF3)2 . 5 (4-picNO). Os compósitos foram caracterizados por medidas de condutância em acetona-tria e nitrometano e por espectroscopia na região do infravermelho. Os dados do infravermelho sugerem a coordenação do ion perlorato nos complexos com 2-, 3-, 4-picNO e 4-OMePyNO.

UNITERMOS: Chumbo; complexos; perlorato coordenado; aminoácido aromático.

REFERENCES

Recebido em 25.04.89
Aceito em 30.06.89