INVESTIGAÇÃO POTENCIOMÉTRICA DE EQUILÍBRIOS IÔNICOS. DEPENDÊNCIA MATEMÁTICA ENTRE OS COEFICIENTES DE ATIVIDADE DE ESPÉCIES EM EQUILÍBRIO E A FORÇA IÔNICA: SISTEMA Cu(II)-ACETATO, EM MEIO AQUOSO

Leonardo PEZZA*
Manuel MOLINA**
Cristo MÉLIOS**
Mercedes de MORAES**
João Olímpio TGNOLLI**

RESUMO: Os coeficientes de atividade dos íons H₃O⁺, Cu²⁺ e H₅CCO₃⁻ foram determinados a 25 ºC num intervalo de força iônica entre 0,10 e 3,00 M, ajustado pela adição de NaClO₄. A investigação foi realizada por meio de estudo potenciométrico com eletrodos ión-seletivos a H₃O⁺ e Cu⁺⁺ e um eletrodo de segunda espécie sensível ao íon acetato. Os coeficientes de atividade (γᵢ) podem ser avaliados através do emprego das seguintes equações para os íons H₃O⁺ (γ₃H): Cu⁺⁺ (γ₃Cu) e H₅CCO₃⁻ (γ₃AC): log γ₃H = -0,263 I¹/₂ + 0,148 I + 0,0971 I³/₂; log γ₃Cu = -1,290 I¹/₂ + 0,931 I; log γ₃AC = 0,037 I.

UNITERMOS: Coeficiente de atividade individual; força iônica; mistura de eletrólitos.

INTRODUÇÃO

Em estudos envolvendo equilíbrios em solução, atualmente desenvolvidos neste laboratório, torna-se importante encontrar relações matemáticas entre as constantes de formação de sistemas constituídos por ligantes (L) e íons metálicos (M⁺⁺) de interesse

* Departamento de Química e Geociências—Instituto de Biociências, Letras e Ciências Exatas—UNESP – 15100 – São José do Rio Preto – SP.
** Departamento de Química Analítica—Instituto de Química—UNESP – 14800 – Araraquara – SP.
biológico, ambiental, etc. em solução aquosa, com a composição e a força iônica (I) do meio. Dentro dessa linha faz-se necessário determinar a dependência dos coeficientes de atividade de todas as espécies envolvidas nos equilíbrios com a força iônica do meio. Tais informações podem levar ao conhecimento completo do sistema, o que permitirá a interconversão de valores de constantes de equilíbrio de determinado sistema para qualquer valor de I, dentro do intervalo estudado.

Alguns pesquisadores têm empregado eletrodos ion-seletivos na avaliação de coeficientes de atividade individuais de determinados íons. No presente trabalho, fez-se uma estimativa da dependência do coeficiente de atividade dos íons H$_2$O$^+$, Cu$^{2+}$ e acetato (Ac$^-$) com a força iônica do meio, a 25°C, em solução aquosa, através de um estudo potenciométrico com eletrodos ion-seletivos a H$_2$O$^+$ e Cu$^{2+}$ e um eletrodo de segunda espécie sensível ao ion acetato.

MÉTODOS E TÉCNICAS

Os coeficientes de atividade individuais dos íons H$_2$O$^+$, Cu$^{2+}$ e Ac$^-$ (y$_{H_2O}$, y$_{Cu}$ e y$_{Ac}$, respectivamente) foram determinados através de medidas potenciométricas, em solução aquosa, na presença de NaClO$_4$ como eletrólito inerte.

As medidas foram realizadas mediante o uso do titulador automático "Titroprocessor Metrohm", mod. 670, acoplado a buretas de pistão automáticas "Metrohm", mod. 665, empregando-se a seguinte célula potenciométrica termostatizada a (25±0,1)°C:

\[
\begin{align*}
(-) & Ag/AgCl & | & [NaCl]_{(aq)} = 0,0104 M & | & [NaClO_4]_{(aq)} = I & | & [NaClO_4]_{(aq)} = (I-0,010) M & | & E.I.(+)\ (\alpha)
\end{align*}
\]

onde: Y = HClO$_4$; NaAc (mistura equimolar HAc-NaAc) e Cu(ClO$_4$)$_2$;

E.I. = eletrodo indicador (eletrodo de vidro Metrohm EA 158; eletrodo de Hg$_2$Ac$^-$ [Hg|Pt e eletrodo ion seletivo a Cu(II) Metrohm nº 6.0502.140); x varia no intervalo de 1,00 x 10$^{-3}$ a 1,194 x 10$^{-3}$ M.

O eletrodo de referência utilizado nas três células é de procedência "Metrohm", nº 6.0726.100.

Todos os reagentes empregados foram de pureza analítica; foi empregada águas destiladas e deionizadas no preparo de todas as soluções. As medidas foram realizadas em sala termostatizada a (25±1)°C.

Um microcomputador ITAUTEC-PC286 foi utilizado na execução de todos os cálculos.

Tratamento de dados experimentais

A força eletromotriz (E) da célula (a) acima é dada por:

\[E = E_0^\circ \pm S \log [x] + E_I \]

onde: \[E_0^\circ = \left(E_0^\circ \right)_0 \pm S \log y_x \]

\[S = 2,303 RT/nF = 59,16 \text{ mV/dec. para H}^+ \text{ e Ac}^- \text{ a } 25^°C \text{ e } 29,58 \text{ mV/dec. para Cu}^{2+} \text{ a } 25^°C; \]

\[x = H^+; \text{ Ac}^- \text{ e Cu}^{2+}; \]

\[E_I \text{ é o potencial de junção líquida que para o caso do sistema HClO}_4-NaClO_4 \text{ tem a forma: } E_I = K_H[H^+]. \]

Já para os outros sistemas estudados ele é constante e desprezável nas condições experimentais empregadas.

Dessa forma temos:

\[\text{HClO}_4-NaClO_4: E = E_0^{\circ} + S \log [H^+] + K_H[H^+] \]

\[\text{HAc-NaAc-NaClO}_4: E = E_0^{\circ} - S \log [\text{Ac}^-] \]

\[\text{Cu(ClO}_4)_2-NaClO_4: E = E_0^{\circ} + S \log [\text{Cu}^{2+}] \]

Através de pares de valores (E; [H$^+$], [Ac$^-$] ou [Cu$^{2+}$]) e empregando-se programa computacional apropriado é possível encontrar E_0°, K_H and E_I.

A expressão utilizada para obter os valores de $\log y_H$ em misturas de eletrólitos 5,6 é a seguinte:

\[\log y_H = a(1/2) + b + c1/2 + d^2 + ... \]

onde: a,b,c,d... são parâmetros empíricos.

Combinando-se a equação (2) com (6), tem-se:

\[E_0^{\circ} = \left(E_0^{\circ} \right)_0 \pm S[a(1/2) + b + c1/2 + d^2 + ...] \]

Dispondo-se de suficientes pares de valores (E_0°, I), determinaram-se por meio de programa estatístico adequado, os parâmetros envolvidos na equação (7) e portanto a dependência entre y_H e a força iônica do meio.

RESULTADOS E DISCUSSÃO

O ajuste da equação (7) aos dados experimentais mostrou-se de boa qualidade, conforme pode ser observado pelos gráficos da Figura 1. Mínimos extremamente característicos foram obtidos para H$_2$O$^+$ e Cu$^{2+}$ ao mesmo tempo que se observa um comportamento linear para o Ac$^-$, similar ao do ácido acético em mistura de eletrólitos fortes, o que confere consistência ao método proposto para estimar os y_x desses íons.

Dessa maneira foi possível encontrar equações gerais que expressem a dependência dos coeficientes de atividade das espécies envolvidas no sistema Cu(II) — Acetato (H$_3$O$^+$, Cu$^{+2}$ e Ac$^-$) com a força iônica do meio (rodapé da Tabela 1).

Tabela 1 — Resultados dos coeficientes iônicos de atividade* do H$_3$O$^+$, Cu$^{+2}$ e Ac$^-$ em várias forças iônicas

<table>
<thead>
<tr>
<th>I (M)</th>
<th>$y_H^{(0)}$</th>
<th>$y_{Cu}^{(0)}$</th>
<th>$y_{Ac}^{(0)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,10</td>
<td>0,860</td>
<td>0,484</td>
<td>—</td>
</tr>
<tr>
<td>0,20</td>
<td>0,825</td>
<td>0,373</td>
<td>1,03</td>
</tr>
<tr>
<td>0,30</td>
<td>0,836</td>
<td>0,357</td>
<td>1,04</td>
</tr>
<tr>
<td>0,50</td>
<td>0,960</td>
<td>0,438</td>
<td>1,09</td>
</tr>
<tr>
<td>0,60</td>
<td>0,970</td>
<td>0,506</td>
<td>1,11</td>
</tr>
<tr>
<td>0,80</td>
<td>1,20</td>
<td>0,655</td>
<td>1,14</td>
</tr>
<tr>
<td>1,00</td>
<td>1,26</td>
<td>0,721</td>
<td>1,15</td>
</tr>
<tr>
<td>1,20</td>
<td>1,41</td>
<td>0,881</td>
<td>1,17</td>
</tr>
<tr>
<td>2,00</td>
<td>1,58</td>
<td>1,09</td>
<td>1,19</td>
</tr>
<tr>
<td>2,40</td>
<td>2,04</td>
<td>1,72</td>
<td>—</td>
</tr>
<tr>
<td>2,50</td>
<td>2,18</td>
<td>1,94</td>
<td>—</td>
</tr>
<tr>
<td>3,00</td>
<td>3,11</td>
<td>3,62</td>
<td>—</td>
</tr>
</tbody>
</table>

* Os y são expressos na escala de concentração molar;
(a) log $y_H = -0,533 I^{1/2} + 0,148 I + 0,9971 I^{1/2}$ (intervalo experimental de I = 0,10 a 3,00 M);
(b) log $y_{Cu} = -1,250 I^{1/2} + 0,931 I$ (intervalo experimental de I = 0,10 a 3,00 M);
(c) log $y_{Ac} = 0,03178 I$ (intervalo experimental de I = 0,30 a 2,00 M).

Na Tabela 1, encontram-se os valores calculados dos coeficientes de atividade individuais dos íons H$_3$O$^+$, Cu$^{+2}$ e Ac$^-$ dentro dos respectivos intervalos de força iônica estudados.

Os resultados da Tabela 1 mostram que o efeito salino do NaClO$_4$ sobre os coeficientes de atividade do íon acetato é bem menor do que o observado para o H$_3$O$^+$ e Cu$^{+2}$.

AGRADECIMENTOS

Os autores agradecem ao auxílio financeiro concedido pela FAPESP para aquisição de equipamentos; à CAPES (PICD) pela bolsa concedida.

ABSTRACT: The activity coefficients associated with the H_3O^+, Cu^{2+} and $H_2CCO_2^-$ ions have been determined at 25 °C and ionic strengths (I) comprised between 0.10 and 3.00 M, adjusted by adding NaClO₄. The investigation was carried out potentiometrically by using H_3O^+ and Cu^{2+} ion-selective electrodes as well as a second kind electrode which responds to $H_2CCO_2^-$. It was found that the activity coefficients (γ) can be assessed through the following equations for H_3O^+ (γ_H); Cu^{2+} (γ_{Cu}) and $H_2CCO_2^-$ (γ_{AC}) ions:

$$\log \gamma_H = -0.263 I^{1/2} + 0.148 I + 0.0971 I^{3/2}$$
$$\log \gamma_{Cu} = -1.290 I^{1/2} + 0.931 I + 0.0378 I$$

KEY-WORDS: single activity coefficient; ionic strength; mixture of electrolytes.

REFERÊNCIAS BIBLIOGRÁFICAS

7. Programa estatístico STATGRAPHICS, versão 2.7, SERIAL STG 27 5-1C.

Recebido em 27.04.90
Aceito em 07.06.90